六年级数学上册复习知识:整数和小数的应用
培养良好的学习兴趣是一件非常重要的事情。下面是小编收集整理的小学六年级数学上册《整数和小数的应用》的复习知识点以供大家学习。
整数和小数的应用
1 简单应用题
(1) 简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。
(2) 解题步骤:
a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。
b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。
C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。
2 复合应用题
(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。
(2)含有三个已知条件的两步计算的应用题。
求比两个数的和多(少)几个数的应用题。
比较两数差与倍数关系的应用题。
(3)含有两个已知条件的两步计算的应用题。
已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。
已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。
(4)解答连乘连除应用题。
(5)解答三步计算的应用题。
(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。
(7)常见的数量关系:
总价= 单价×数量
路程= 速度×时间
工作总量=工作时间×工效
总产量=单产量×数量
3、典型应用题
具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
(7)行程问题:
关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?
兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)
鸡的只数 50-35=15 (只)