10大逻辑思维数学题
长期不思考,思维就容易变得比较迟钝,下面大家和我一起来做做下面这10道神题,让我们的思维活跃起来!以下是小编为大家准备的10大逻辑思维数学题,希望大家喜欢!
10大逻辑思维数学题(一)
1
有3个人去投宿,一晚30元。三个人每人掏了10元凑够30元交给了老板。后来老板说今天优惠只要25元就够了,拿出5元命令服务生退还给他们,服务生偷偷藏起了2元,然后,把剩下的3元钱分给了那三个人,每人分到1元。这样,一开始每人掏了10元,现在又退回1元,也就是10-1=9,每人只花了9元钱,3个人每人9元,3 X 9 = 27元 服务生藏起的2元=29元,还有一元钱去了哪里???此题在新西兰面试的时候曾引起巨大反响。有谁知道答案呢?
答案:每人所花费的9元钱已经包括了服务生藏起来的2元(即优惠价25元 服务生私藏2元=27元=3*9元)因此,在计算这30元的组成时不能算上服务生私藏的那2元钱,而应该加上退还给每人的1元钱。即:3*9 3*1=30元正好!还可以换个角度想……那三个人一共出了30元,花了25元,服务生藏起来了2元,所以每人花了九元,加上分得的1元,刚好是30元。因此这一元钱就找到了。
小结:这道题迷惑人主要是它把那2元钱从27元钱当中分离了出来,原题的算法错误的认为服务员私自留下的2元不包含在27元当中,所以也就有了少1元钱的错误结果;而实际上私自留下的2元钱就包含在这27元当中,再加上退回的3元钱,结果正好是30元。
2
有个人去买葱,问葱多少钱一斤?卖葱的人说 1块钱1斤,这是100斤,要100元。买葱的人又问:葱白跟葱绿分开卖不,卖葱的人说:卖,葱白7毛,葱绿3毛。买葱的人都买下了,称了称葱白50斤,葱绿50斤。最后一算葱白50*7等于35元,葱绿50*3等于15元,35 15等于50元。买葱的人给了卖葱的人50元就走了,而卖葱的人却纳闷了,为什么明明要卖100元的葱,而那个买葱的人为什么50元就买走了呢?你说这是答案:1块钱一斤是指不管是葱白还是葱绿都是一块钱一,当他把葱白和葱绿分开买时,葱白7毛葱绿3毛,实际上其重量是没有变化,但是单价都发生了变化,葱白少收了3毛每斤,葱绿少收了7毛每斤,所以最终50元就买走了。
3
有口井7米深,有个蜗牛从井底往上爬,白天爬3米,晚上往下坠2米,问蜗牛几天能从井里爬出来?
答案:5天。这道题很多人想都不想就说是七天?其实用一个很简单的方法,你拿张纸画一下就出来了,这道题特简单…
4
一毛钱一个桃,三个桃胡换一个桃,你拿1块钱能吃几个桃?
答案:1块钱买10个,吃完后剩10个核。再换3个桃,吃完后剩4个核。再换1个桃,吃完后剩2个核。朝卖桃的赊1个,吃完后剩3个核。把核都给卖桃的,顶赊的那个。所以,你一共吃了10 3 1 1=15个桃。这是大家都知道的方法。还有个方法:不要一次买十个,分开买,第一次三个,第二次两个,第三次两个,这样…很简单,也是15个。
5
有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现在要求用一部没有砝码的天秤称三次,将那个重量异常的球找出来,并且知道它比其它十一个球较重还是较轻。
答案:分成A B C 3组,每组4颗,第一次称可能有3种结果。A>B或A=B或A 如果A大于B直接称A的4颗球一边2颗,这样就知道哪边重,哪边重称哪边就知道哪个是最重的球了!如果A等于B直接称C的4颗球,方法同上;如果A小于B直接称B的4颗球,方法同上。
6
一个商人骑一头驴要穿越1000公里长的沙漠,去卖3000根胡萝卜。已知驴一次性可驮1000根胡萝卜,但每走1公里又要吃掉1根胡萝卜。问:商人最多可卖出多少胡萝卜?
答案:534根。首先驼1000根萝卜前进x1公里放下1000-2*x1根后带走剩下的x1根返回;然后驼1000根萝卜前进,至x1公里处取x1根萝卜,让驴子恰好驼1000根萝卜;继续前进至距起点x2公里处,放下1000-2*(x2-x1)根萝卜再返回,到x1公里处恰好把萝卜吃完,再取x1根萝卜返回起点;最后驼走一千根萝卜,行至x1、x2处依次取走所有萝卜,再行至终点。x1、x2处剩余的萝卜分别小于等于x1和(x2-x1),在这个不等式约束条件下,求得两处剩余萝卜的最大值即可,因为实际上两处剩余的萝卜个数就是最终能够到达终点的萝卜个数。最后求的x1=200,x2=1600/3。驴走过的总路程是2*x1 2*x2 1000=2466 2/3,按题意是走完一公里才吃一根萝卜,也就是吃掉的萝卜总数为里程数向下取整,为2466,所以最终剩下能卖掉的萝卜是3000-2466=534根了。
7
话说某天一艘海盗船被天下砸下来的一头牛给击中了,5个倒霉的家伙只好逃难到一个孤岛,发现岛上孤零零的,幸好有有棵椰子树,还有一只猴子!大家把椰子全部采摘下来放在一起,但是天已经很晚了,所以就睡觉先。晚上某个家伙悄悄的起床,悄悄的将椰子分成5份,结果发现多一个椰子,顺手就给了幸运的猴子,然后又悄悄的藏了一份,然后把剩下的椰子混在一起放回原处,最后还是悄悄滴回去睡觉了。过了会儿,另一个家伙也悄悄的起床,悄悄的将剩下的椰子分成5份,结果发现多一个椰子,顺手就又给了幸运的猴子,然后又悄悄滴藏了一份,把剩下的椰子混在一起放回原处,最后还是悄悄滴回去睡觉了。又过了一会…又过了一会…总之5个家伙都起床过,都做了一样的事情。早上大家都起床,各自心怀鬼胎的分椰子了,这个猴子还真不是一般的幸运,因为这次把椰子分成5分后居然还是多一个椰子,只好又给它了。问题来了,这堆椰子最少有多少个?
答案:这堆椰子最少有15621。第一个人给了猴子1个,藏了3124个,还剩12496个;第二个人给了猴子1个,藏了2499个,还剩9996个;第三个人给了猴子1个,藏了1999个,还剩7996个;第四个人给了猴子1个,藏了1599个,还剩6396个;第五个人给了猴子1个,藏了1279个,还剩5116个;最后大家一起分成5份,每份1023个,多1个,给了猴子。
8
说一个屋里有多个桌子,有多个人?如果3个人一桌,多2个人。如果5个人一桌,多4个人。如果7个人一桌,多6个人。如果9个人一桌,多8个人。如果11个人一桌,正好。请问这屋里多少人?
答案:2519个人。只要是 315×(11X 8)-1 都可以,因为9是3的3倍所以3不算,根据题目可以得出规律是 5、 7 、9 的倍数少一,于是将5×7×9=315,然后算出315的倍数除以11的周期,得出周期为:7 3 10 6 2 9 5 1 8 4 0 共11个,因为是除以11的嘛,有简便算法不用一个个试的,因为315-1要被11整除,所以取周期余1的。
9
有人想买几套餐具,到餐具店看了后,发现自己带的钱可以买21把叉子和21把勺子,或者28把小刀。如果他买的叉子,勺子,小刀数量不统一,就无法配成套,所以他必须买同样多的叉子,勺子,小刀,并且正好将身上的钱用完。如果你是这个人,你该怎么办?
答案:可以买12副餐具。一把勺子和叉子的钱是1/21 一把小刀的钱是1/28,一套的总价是1/21 1/28=1/12,所以可以买12套,所有钱都用完了。
10
一个小偷被警查发现,警查就追小偷,小偷就跑,跑着着跑着,前面出现条河,这河宽12米,河在小偷和警查这面有颗树,树高12米,树上叶子都光了,小偷围着个围脖长6米,问小偷如何过河跑?
答案:把围脖系在树顶上,小偷就吊着围脖荡秋千,围脖和树干成45度角的时候就放手,就会把小偷甩过河了。
10大逻辑思维数学题(二)
1.如何问问题?
有甲、乙两人,其中,甲只说假话,而不说真话;乙则是只说真话,不说假话。但是,他们两个人在回答别人的问题时,只通过点头与摇头来表示,不讲话。有一天,一个人面对两条路:A与B,其中一条路是通向京城的,而另一条路是通向一个小村庄的。这时,他面前站着甲与乙两人,但他不知道此人是甲还是乙,也不知道“点头”是表示“是”还是表示“否”。现在,他必须问一个问题,才可能断定出哪条路通向京城。那么,这个问题应该怎样问?
2.他们的职业是分别什么?
小王、小张、小赵三个人是好朋友,他们中间其中一个人下海经商,一个人考上了重点大学,一个人参军了。此外他们还知道以下条件:小赵的年龄比士兵的大;大学生的年龄比小张小;小王的年龄和大学生的年龄不一样。请推出这三个人中谁是商人?谁是大学生?谁是士兵?
3.谁做对了?
甲、乙、丙三个人在一起做作业,有一道数学题比较难,当他们三个人都把自己的解法说出来以后,甲说:“我做错了。”乙说:“甲做对了。”丙说:“我做错了。”在一旁的丁看到他们的答案并听了她们的意见后说:“你们三个人中有一个人做对了,有一个人说对了。”请问,他们三人中到底谁做对了?
4.鞋子的颜色
小丽买了一双漂亮的鞋子,她的同学都没有见过这双鞋了,于是大家就猜,小红说:“你买的鞋不会是红色的。”小彩说:“你买的鞋子不是黄的就是黑的。”小玲说:“你买的鞋子一定是黑色的。”这三个人的看法至少有一种是正确的,至少有一种是错误的。请问,小丽的鞋子到底是什么颜色的?
5.谁偷吃了水果和小食品?
赵女士买了一些水果和小食品准备去看望一个朋友,谁知,这些水果和小食品被他的儿子们偷吃了,但她不知道是哪个儿子。,为此,赵女士非常生气,就盘问4个儿子谁偷吃了水果和小食品。老大说道:“是老二吃的。”老二说道:“是老四偷吃的。”老三说道:“反正我没有偷吃。”老四说道:“老二在说谎。”这4个儿子中只有一个人说了实话,其他的3个都在撒谎。那么,到底是谁偷吃了这些水果和小食品?
6.谁在说谎,谁拿走了零钱?
姐姐上街买菜回来后,就随手把手里的一些零钱放在了抽屉里,可是,等姐姐下午再去拿钱买菜的时候发现抽屉里的零钱没有了,于是,她就把三个妹妹叫来,问她们是不是拿了抽屉里的零钱,甲说:“我拿了,中午去买零食了。”乙说:“我看到甲拿了。”丙说:“总之,我与乙都没有拿。”这三个人中有一个人在说谎,那么到底谁在说谎?谁把零钱拿走了?
7.夜明珠在哪里?
一个人的夜明珠丢了,于是他开始四处寻找。有一天,他来到了山上,看到有三个小屋,分别为1号、2号、3号。从这三个小屋里分别走出来一个女子,1号屋的女子说:“夜明珠不在此屋里。”2号屋的女子说:“夜明珠在1号屋内。”3号屋的女子说:“夜明珠不在此屋里。”这三个女子,其中只有一个人说了真话,那么,谁说了真话?夜明珠到底在哪个屋里面?
8.谁的成绩好
玲玲和芳芳经常在一起玩,有一次,有人问她们:“你们俩经常在一起玩,这次期末考试你们谁的成绩好呀?”玲玲说:“我的成绩比较好一点。”小红说芳芳说:“我的成绩比较差一些。”她们这两个人之中至少有一个人没有说实话。那么,到底她们谁的考试成绩好?
9.她们分别买了什么
小丽、小玲、小娟三个人一起去商场里买东西。她们都买了各自需要的东西,有帽子,发夹,裙子,手套等,而且每个人买的东西还不同。有一个人问她们三个都买了什么,小丽说:“小玲买的不是手套,小娟买的不是发夹。”小玲说:“小丽买的不是发夹,小娟买的不是裙子。”小娟说:“小丽买的不是帽子,小娟买的是裙子。”她们三个人,每个人说的话都是有一半是真的,一半是假的。那么,她们分别买了什么东西?
10.谁偷了奶酪
有四只小老鼠一块出去偷食物(它们都偷食物了),回来时族长问它们都偷了什么食物。老鼠A说:我们每个人都偷了奶酪。老鼠B说:我只偷了一颗樱桃。老鼠C说:我没偷奶酪。老鼠D说:有些人没偷奶酪。族长仔细观察了一下,发现它们当中只有一只老鼠说了实话。那么下列的评论正确的是:
a.所有老鼠都偷了奶酪;
b.所有的老鼠都没有偷奶酪;
c.有些老鼠没偷奶酪;
d.老鼠B偷了一颗樱桃。
答案:
1.这个人只要站在A与B任何一条路上,然后,对着其中的一个人问:“如果我问他(甲、乙中的另外一个人)这条路通不通向京城,他会怎么回答?”
如果甲与乙两个人都摇头的话,就往这条路向前走去,如果都点头,就往另一外一条走去。
2.小张是商人,小赵是大学生,小王是士兵。假设小赵是士兵,那么就与题目中“小赵的年龄比士兵的大”这一条件矛盾了,因此,小赵不是士兵;假设小张是大学生,那就与题目中“大学生的年龄比小张小”矛盾了,因此,小张不是大学生;假设小王是大学生,那么,就与题目中“小王的年龄和大学生的年龄不一样”这一条件矛盾了,因此,小王也不是大学生。所以,小赵是大学生。由条件小赵的年龄比士兵的大,大学生的年龄比小张小得出小王是士兵,小张是商人。
3.假设丙做对了,那么甲、乙都做错了,这样,甲说的是正确的,乙、丙都说错了,符合条件,因此,丙做对了。
4.假设小丽的鞋子是黑色的,那么三种看法都是正确的,不符合题意;假设是黄色的,前两种看法是正确的,第三种看法是错误的;假设是红色的,那么三句话都是错误的。因此,小丽的裙子是黄色的。
5.是老三偷吃了水果和小食品,只有老四说了实话。用假设法分别假设老大、老二、老三、老四都说了实话,看是否与题意矛盾,就可以得出答案。
6.丙说谎,甲和丙都拿了一部分。假设甲说谎的话,那么乙也说谎,与题意不符;假设乙说谎,那么甲也说谎,与题意不符。那么,说谎的肯定是丙了,只有甲和丙都拿零钱了才符合题意。
7.1号屋的女子说的是真话,夜明珠在3号屋子内。假设夜明珠在1号屋内,那么2号屋和3号屋的女子说的都是真话,因此不在1号屋内;假设夜明珠在2号屋内,那么1号屋和3号屋的女子说的都是真话,因此不在2号屋内;假设夜明珠在3号屋内,那么只有1号屋的女子说的是真话,因此,夜明珠在3号屋里内。
8.芳芳。假设玲玲说的是实话,那么,芳芳说的也是实话了,与题意不符;假设芳芳说的是实话,那么玲玲说的也是实话了,与题意不符。因此,两个人都没有说实话,把她们两个人说的话反过来就会发现,芳芳的成绩好。
9.小丽买了帽子,小玲买了手套,小娟买了裙子。
10.假设老鼠A说的是真话,那么其他三只老鼠说的都是假话,这符合题中仅一只老鼠说实话的前提;假设老鼠B说的是真话,那么老鼠A说的就是假话,因为它们都偷食物了;假设老鼠C或D说的是实话,这两种假设只能推出老鼠A说假话,与前提不符。所以a选项正确,所有的老鼠都偷了奶酪。