北师大版七年级数学优秀教案

2017-05-17

学习和运用教学设计的原理是促使教学工作科学化的有效途径。下面是小编为大家精心整理的北师大版七年级数学优秀教案,仅供参考。

北师大版七年级数学优秀教案(一)

1.3 截一个几何体

教学目标:

1、认知目标:通过用一个平面去截一个正方体的切截活动过程,掌握空间图形与截面的关

系,发展学生的空间观念,发展几何直觉。

2、能力目标:通过学生参与对实物有限次的切截活动和用操作探索型课件进行的无限次的

切截活动的过程,使学生经历观察、猜想、实际操作验证、推理等数学活动过程,发展学生的动手操作、自主探究、合作交流和分析归纳能力。

3、情感目标:通过以教师为主导,引导学生观察发现、大胆猜想、动手操作、自主探究、

合作交流,使学生在合作学习中体验到:数学活动充满着探索和创造。使学生获得成功的体验,增强自信心,提高学习数学的兴趣。

教学的重点:引导学生用一个平面去截一个正方体的切截活动,体会截面和几何体的关系,充分

让学生动手操作、自主探索、合作交流。

教学的难点:从切截活动中发现规律,并能用自己的语言来表达。能应用规律来解决问题。 课程过程:

一、设疑自探

1.创设情景,导入新课

复习面的分类和面面相交的结果.

集体回答或发表个人见解.

为理解截面的边数作铺垫.

2、学生探索

由实物引入截(切)面的意义.用教具演示,将一个几何体切开得到截(切)面,让学生观察这两个面的特点.

了解到这两个截面完全一样的.

自然过渡到用一个平面去截正方体.

问题的提出:“你注意到了吗?妈妈在将黄瓜切成一片片时,得到的截面是什么样的?…,如果用一个平面去截一个正方体得到的截面可又将是怎样的呢?分组讨论,比一比那一组的结论多”激发竞争意识.

实施“想—做—想”的学习策略,让学生先想一想,并把猜想的结果记录下来,的猜想. 培养学生的想象力.

分组实践操作:“与同伴交流,看看别人截处的面是什么?他为什么得到与你不同的截面?他是怎样得到的?你还能截得什么样的截面?”比一比那一组讨论的结果与实践一致的多.表扬

表现好的.培养集体荣誉感.

分组通过实践操作证实小组的讨论的结果,发表、展示自己的研究成果.(由于时间关系,选择有代表性的小组展示)

培养学生的合作交流能力、对问题的探究能力及表达能力和竞争意识.

二、解疑合探

帮助学生完成由实际体验到空间想象的过渡,提高想象能力.并总结各种截面是如何截出来的,它们有什么规律.

观察,想象,思考截面的边那些面相交的来.

新问题:“刚才切、截一个正方体就得多个不同的截面,那么如果截一个圆柱体呢?或是截一个其它棱柱体呢?你又会得到一些什么样的截面?”

动手操作、探究、交流.

三.质疑再探:

说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)

四、运用拓展

练习、作业布置、解答课堂练习.学生能独立完成课堂练习.

北师大版七年级数学优秀教案(二)

1.4 从不同方向看

教学目标:

1.经历"从不同方向观察物体"的活动过程,发展空间思维,能在与他人交流的过程中,合

理清晰地表达自己的思维过程.

2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不一样的结果.

3.能识别简单物体的三视图,会画立方体及其简单组合体的三视图.

教学重点:识别简单物体的三视图,会画立方体及其简单组合体的三视图.

教学难点:画立方体及其简单组合体的三视图.

教学过程:

一、设疑自探

1、创设问题情境,从学生熟悉的古诗入手,引出课题.

横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.

哪位同学能说说苏东坡是怎样观察庐山的吗?

这首诗隐含着一些数学知识.它教会了我们怎样观察物体,这也是我们这节课将要学习的内容——《从不同方向看》.

在此,我想先请同学们一起来做一个小实验.

2、观察实物、利用小实验,使学生初步体会从不同方向观察同一物体,可能看到不一样的结果.

水壶、杯子、乒乓球先用布盖好.

三名学生从不同角度进行观察,回答分别看到了什么?

思考:为什么三名学生看到的不一样?

二、解疑合探

1、观察几个简单几何体的组合,讨论得出"观察同一物体时,可能看到不同的图形"的结论.

拿出前两节课自制的模型(三棱柱).看三棱柱的侧面是什么图形?底面呢?

是不是同一物体,从不同方向看结果一定不一样呢?

由此,我们得到这样的结论:从不同方向观察同一物体时,可能看到不同的图形.

在几何中,我们把从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫俯视图.

2、讨论立方体及其简单组合的三视图.通过讨论,让学生能在与他人交流的过程中,合理清晰地表达自己的思维过程.

给定一个几何体。说说你从正面、左面、上面分别看到什么图形?

主视图、左视图、俯视图是相对于观察者而言的,相对于不同的观察者,其三视图可能不同. 假设从右下角往左上角的方向看是从正面看,则从左向看为从左看,站在观察主视图的位置从上往下看为从上面看.

请同学们思考一下从这三个方向看分别看到什么图形?

(1) (2) (3)

图(1)是从左边看到的图,即左视图.

图(2)是从正面看到的图,即主视图.

图(3)是从上面看到的图,即俯视图.

刚才我们从不同方向观察了实物、几何体,还学习了简单几何体的三视图,为了巩固这些知 识,下面我们来做几道练习.

三、质疑再探 说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)

北师大版七年级数学优秀教案(三)

1.5 生活中的平面图形

教学目标:

1、经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩;

2、认识多边形,探索多边形的某些性质;在活动中感受归纳思想;

3、在活动中发展有条理地思考(感受分类思想).

重点和难点:感受归纳思想和分类思想;归纳.

教学过程:

1.创设情景,导入新课

我们今天要讨论的内容呢,是“生活中的平面图形”. 书上有几幅照片,我们可以从中看到哪些平面图形?

2.学生设疑

刚才我们提到的象三角形、长方形和圆等等图形,和我们前几天讨论过的棱柱、圆锥等图形一样,都是几何图形.只不过长方体等这些图形是立体图形,而我们今天所讨论的这些图形是平面图形.我们只考虑它的形状和大小,以及它们相互之间的位置关系.

我们一起来讨论一下一些平面图形有些什么性质.

请同学们在练习本上分别画一个三角形、一个四边形、一个五边形、一个六边形.

我们把三角形、四边形、五边形、六边形等这些图形都称为多边形.

请同学们讨论一下:这些多边形都有些什么共同特点?什么叫多边形?

由不在同一直线上的几条线段依次首尾相连而成的封闭图形叫多边形.

这些多边形呢,我们还可以给它们取名字.比如说三角形,它有三个顶点,我们把它的三个顶点分别记为A、B、C,那么这个三角形就叫―三角形ABC‖

现在,请同学们给你刚才所画的这个四边形的四个顶点依次标上字母A、B、C、D.请注意:字母要大写,要按照顺序依次书写.

新增加线段AC,称为这个四边形的一条对角线.观察一下,在增加了这条对角线以后,图形有什么变化?

看刚才所画的这个五边形,选择其中一个顶点,画出从这个顶点出发的所有对角线.图形有什么变化?

我们来看一下:从四边形的一个顶点出发,有1条对角线,把这个四边形分割成2个三角形;从五边形的一个顶点出发,有2条对角线,把这个五边形分割成3个三角形;从六边形的一个顶点出发,有3条对角线,把这个六边形分割成4个三角形.这其中是不是可能存在着某种规律?

在四边形中,有1条对角线,2个三角形;五边形中,有2条对角线,3个三角形,等等,现在我们要研究的问题就是:是不是对所有的多边形都是这样?还是只对部分多边形才是这样?一个多边形,如果从一个顶点出发的对角线有n条,那么被分割成三角形的个数是不是一定比n多1个,也就是(n+1)个呢?

我们回顾一下刚才的学习内容:从生活中所熟悉的事物中抽象出几何图形,然后对这些图形的某些性质进行了探讨.在探索活动中,要充分发挥了自己的聪明才智,发现了很多非常重要的结论.如果我们把这些结论本身先放在一边不说,就得到结论的整个过程而言,这个过程本身是不是也非常有意义?

二、解疑合探

看课本,整个图案都是由什么图形组成的?数数看,共有多少个三角形?怎么数?可以互相交流一下.

我们把所有的三角形按大小分成三类:第一类,边长为1个单位的三角形,有几个?

第二类,边长为2的三角形,共有3个;第三类,边长为3的三角形,只有1个.那么所有的三角形只要加加起来就行了.

书上有什么叫弧、什么叫扇形,自己回去看一看.后面“读一读”里有几种正多面体,每种正多面体有几个面、每个面是正几边形、共有多少个顶点、多少条棱,这些呢,书上的表里面也都列出了.

三、质疑再探

说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)

四、运用拓展

1、学生自己编题2、作业

更多相关阅读

最新发布的文章