上海高二数学考试中常用三种解题技巧

2017-06-14

高中数学理论是化归思想的体现,我们可以通过观察数学问题的题根,理解问题,抓住数学问题的题眼,有效地转化问题,下面是小编给大家带来的上海高二数学考试中常用三种解题技巧,希望对你有帮助。

高二数学考试解题技巧一、“构造法+函数法”的结合

而且本题还可以从另一个思路进行解答,就是运用复数模的概念,将相联系的数据和看成一个模函数,仍然可以得到所求的结果。

高二数学考试解题技巧二、转换法

这种方法是体现学生的想象力及创新能力的方法,也是数学解题技巧中最富有挑战性的方法,能将复杂的题型辅以转换的功能,成为简单的、易被理解的题型。比如,一个正方体平面为ABCB和A1B1C1D1,在正方体的棱长D1C1和C1B1分别设置两点E和F为中点,AC与BD相交于P点,A1C1于EF相交于Q点,求证:(1)点D、B、F、B在同一平面上;(2)如果线段A1C通过平面DBFE,交点到R点,那么P、R、Q三点共线?

解题(1):由题可知:线段EF是△D1B1C1的中位线,所以,EF与B1D1平行,在正方体AC1中,线段B1D1与BD平行,相应得出:线段EF与线段BD相平行,由此得出线段EF和BD在一个平面,所以可以求得点D、B、F、E在同一个平面。

解题(2):假设平面A1ACC1为x,平面BDEF为y,由于Q点在平面AC,所以Q点也属于平面x,为x和y的交点,同属两个平面的点。同理可得,点P也属x、y的公共点,而R点是平面A1C与平面y的交点,所以,可以得到P、Q、R三点共线。

高二数学考试解题技巧三、反证法

任何事物的结果有时顺着程序去思考,往往不得要领,倘若从结果向事物开始的方向或用假设的反方向去推理,反倒会“一片洞天”。数学解题技巧也是如此。首先,假设命题结论相反的答案,顺理演绎地解答,得出假设的矛盾结果,从另一侧面论证了正确答案。例如,苏教版教材必修1《函数》章节,已知函数f(x)是一项正负无限大范围内的增函数,a、b都为实数,求证:(1)假设:(a+b)≥0,则函数式表示为:f(a)+f(b)≥f(-a)+f(-b)成立;(2)求证(1)问中逆命题是否正确。

解题分析:(1)因为(a+b)≥0,移项后,可得:a≥-b,由于函数为单调递增函数,则:f(a)≥f(-b),又(a+b)≥0,移项后,可得:b≥-a,f(b)≥f(-a);两个方程相加,得:f(a)+f(b)≥f(-a)+f(-b),由此证明完毕。

解题(2)分析思路就是由(1)中得出的结论f(a)+f(b)≥f(-a)+f(-b),反证得出(a+b)≥0是否成立。于是,我们先假设(a+b)<0成立,那么,移项后,分别出现两个不等式函数,即:f(a) f(b) 四、逐项消除法(也可称:归纳法)

这种方法就是将数列前项与后项进行规律查找,逐项消除或归纳合并的方法去求得答案。在苏教版必修5《数列》章节中,有一道习题为:求:1/2+2/3!+3/4!+4/5!+5/6!+…+(n-1)/n!的和;

解题分析:这道习题就是按照一定的规律进行递增的集合,那么,就可以运用求和的公式,转化为:Sn=1/1-1/2+1/2+1/3+…+1/(n-2)!-1/(n-1)!+1/(n-1)!-1/n=1-(1/n)的形式进行解答,使解题的速度效率提高。

更多相关阅读

最新发布的文章