数学基础知识大全
数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。接下来小编为你整理了数学基础知识大全,一起来看看吧。
数学基础知识之基本数学方法
1、 十进制计数法:
一(个)、十、百、千、万……都叫做计数单位.其中“一”是计数的基本单位.10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十.这种计数方法叫做十进制计数法。
2、 整数的读法:
从高位一级一级读,读出级名(亿、万),每级末尾0都不读.其他数位一个或连续几个0都只读一个“零”。
3、 整数的写法:
从高位一级一级写,哪一位一个单位也没有就写0。
4、 四舍五入法:
求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1.这种求近似数的方法就叫做四舍五入法。
5、 整数大小的比较:
位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推。
数学基础知识之小数部分
“ 小数部分”把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示。如1/10记作0.1,7/100记作0.07。
小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……
小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。如0.36是两位小数,3.066是三位小数。
1、 小数的读法:
整数部分整数读,小数点读点,小数部分顺序读。
2、 小数的写法:
小数点写在个位右下角。
3、 小数的性质:
小数末尾添0去0大小不变。
4、 小数点位置移动引起大小变化:
右移扩大左缩小。
5、 小数大小比较:
整数部分大就大;整数相同看十分位大就大;以此类推。
数学基础知识之分数和百分数
分数和百分数的意义
1、 分数的意义:
把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数.在分数里,表示把单位“ 1” 平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位.
2、 百分数的意义:
表示一个数是另一个数的百分之几的数,叫做百分数.也叫百分率或百分比.百分数通常不写成分数的形式,而用特定的“%”来表示.百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称.
3、 百分数表示两个数量之间的倍比关系,它的后面不能写计量单位.
4、 成数:几成就是十分之几.
■分数的种类
按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数
■分数和除法的关系及分数的基本性质
1、 除法是一种运算,有运算符号;分数是一种数.因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子.
2、 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质.
3、 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据.
■约分和通分
1、 分子、分母是互质数的分数,叫做最简分数.
2、 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分.
3、 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止.
4、 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.
5、 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数.
■倒数
1、 乘积是1的两个数互为倒数.
2、 求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.
3、 1的倒数是1,0没有倒数
■分数的大小比较
1、 分母相同的分数,分子大的那个分数就大.
2、 分子相同的分数,分母小的那个分数就大.
3、 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小.
4、 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大.
■百分数与折数、成数的互化:
例如:三折就是30%,七五折就是75%,成数就是十分之几,六成五就是65%.
■纳税和利息:
税率:应纳税额与各种收入的比率.
利率:利息与本金的百分率.由银行规定按年或按月计算.
利息的计算公式:利息=本金×利率×时间
百分数与分数的区别主要有以下三点:
1.意义不同。
百分数是“表示一个数是另一个数的百分之几的数.”它只能表示两数之间的倍数关系,不能表示某一具体数量.如:可以说 1米 是 5米 的 20%,不可以说“一段绳子长为20%米.”因此,百分数后面不能带单位名称.
分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”.分数不仅可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的3/4;还可以表示一定的数量,如:犌3/4 米等.
2.应用范围不同。
百分数在生产、工作和生活中,常用于调查、统计、分析与比较.而分数常常是在测量、计算中,得不到整数结果时使用.
3.书写形式不同。
百分数通常不写成分数形式,而采用百分号“%”来表示.如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数.
而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分 数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数.
猜你感兴趣的:
1.高等数学基础知识
2.初二数学基本知识汇总
3.高三数学基础知识总结
4.中考数学基础知识整理总结
5.数学知识手抄报大全