无线网络技术应用速查方法技巧
一、无线网络的原理及主要标准
无线网络是计算机网络与无线通信技术相结合的产物,它提供了使用无线多址信道的一种有效方法来支持计算机之间的通信,并为通信的移动化、个人化和多媒体应用提供了潜在的手段。一般而言,凡采用无线传输的计算机网络都可称为无线网。从WLAN到蓝牙、从红外线到移动通信,所有的这一切都是无线网络的应用典范。它不采用传统电缆线提供传统有线局域网的所有功能,网络所需的基础设施不需要埋在地下或隐藏在墙里,网络能够随着实际需要移动或变化。说得通俗点,就是局域网的无线连接形式,也就是无线局域网(Wireless Local-area Network,WLAN)。
1.无线网络传输原理
无线局域网的传输原理和普通有线网络一样,也是采用了ISO/RM七层网络模型,只是在模型的最低两层“物理层”和“数据链路层”中,使用了无线的传输方式。尽管目前各类无线网络的标准和规范并不统一,但是就其传输方式来看肯定是以下两种之一:无线电波方式和红外线方式。其中红外线传输方式是目前应用最为广泛的一种无线网技术,现在家用电器中使用频繁的家电遥控器几乎都是采用红外线传输技术。作为无线局域网的传输方式,红外线传输的最大优点是不受无线电波的干扰,而且红外线的使用也不会被国家无线电管理委员会加以限制。但是,红外线传输方式的传输质量受距离的影响非常大,并且红外线对非透明物体的穿透性也非常差,这就直接导致了红外线传输技术很难成为计算机无线网络中的主角。相比之下,无线电波传输方式的应用则广泛得多。采用无线电波进行传输,不仅覆盖范围大、发射功率强,而且还具有隐蔽性、保密性等特点,不会干扰同频的系统,具有很高的可用性。以下介绍几种主要的无线电波调制方式。
(1)扩频谱方式
扩频通信的基本特征是使用比发送的信息数据速率高许多倍的伪随机码把载有信息数据的基带信号的频谱进行扩展,形成宽带的低功率频谱密度的信号来发射。增加带宽可以在较低的信噪比情况下以相同的信息传输率来可靠地传输信息。在信号被噪声淹没的情况下,只要相应地增加信号带宽,仍然能够保持可靠的通信,也就是可以用扩频方法以宽带传输信息来换取信噪比上的好处。这就是扩频通信的基本思想和理论依据。这一做法虽然牺牲了频带带宽,但却提高了通信系统的抗干扰能力和安全性。
目前采用扩展频谱方式的无线局域网一般选择的都是ISM频段,这里ISM分别取于Industrial、Scientific及Medical的第一个字母。许多工业、科研和医疗设备的发射频率均集中于该频段。例如美国ISM频段由902MHz~928MHz、2.4GHz~2.48GHz、5.725GHz~5.850GHz三个频段组成。如果发射功率及带宽辐射满足美国联邦通信委员会(FCC)的要求,则无须向FCC提出专门的申请即可使用ISM频段。
实现扩频通信的基本工作方式有4种:直接序列扩频(Direct Sequence Spread Spectrum)工作方式(简称DSSS方式);跳变频率(Frequency Hopping)工作方式(简称FH方式);跳变时间(Time Hopping)工作方式(简称TH方式);线性调频(Chirp Modulation)工作方式(简称Chirp方式)。目前使用最多、最典型的扩频工作方式是直扩式(DSSS方式),在无线网络的通信中,就是采用这种工作方式。
(2)窄带调制方式
顾名思义,在这种调制方式下,数据信号在不做任何扩展的情况下直接发射出去。与扩展频谱方式相比,窄带调试方式占用频带少,频带利用率高。不过,采用窄带调制方式的无线局域网要占用专用频段,在国内现有条件下需经过国家无线电管理部门的批准才能使用。
2.无线网络的优点
与有线网络相比,无线局域网具备了如下主要优势:
安装便捷:在网络的组建过程中,对周边环境影响最大的就是网络布线了。而无线局域网的组建则几乎不用考虑它对环境带来的影响,一般只需在该区域安放一个或多个无线接入(Access Point)设备即可建立网络覆盖。
使用灵活:在有线网络中,网络设备的安放位置受网络信息点位置的限制。而无线局域网一旦建成后,在信号覆盖区域内的任何位置都可方便地接入网络,进行数据通信。
经济节约:由于有线网络灵活性的不足,设计者往往要尽可能地考虑到未来扩展的需要,在网络规划时要预设大量利用率较低的接入点,造成资源浪费。而且一旦网络的发展超出了预期的规划,整体的改造也将是一笔不小的开支。无线局域网的出现,彻底解决了这一规划上的难题,充分保护了已有的投资,而且改造和维护起来也十分简便。
易于扩展:同有线局域网一样,无线局域网具备了多种配置方式,能根据实际需要灵活选择、合理搭配,并能提供像漫游等有线网络无法提供的特性。
目前,无线局域网的数据传输速率可达54Mbps,已经非常接近有线局域网的传输速率,而且其远至20km的传输距离也是有线局域网所望尘莫及的。作为有线局域网的一种补充和扩展,无线局域网使计算机具有了可移动性,能快速、方便地解决有线网络不易实现的网络连通问题。
3.无线网络的主要标准
无线技术包括了无线局域网技术和以GPRS/3G为代表的无线上网技术,这些标准和技术发展到今天,已经出现了包括IEEE802.11、蓝牙技术和HomeRF等在内的多项标准和规范,以IEEE(电气和电子工程师协会)为代表的多个研究机构针对不同的应用场合,制定了一系列协议标准,推动了无线局域网的实用化。这些协议由Wi-Fi(Wi-Fi联盟是一家世界性组织,成立的目标是确保符合802.11标准的WLAN产品之间的相互协作性)组织制定和进行认证。我国早在2004 年7 月26 日向国际标准化组织提交了无线局域网中国国家标准WAPI(无线局域网鉴别与保密基本结构) 提案,这是中国拥有自主知识产权的无线局域网标准,该标准较好地解决了无线局域网的安全问题,但是由于种种原因它现在并没有得到执行。下面列出了一些主要无线局域网标准。
(1) IEEE802.11系列协议
作为全球公认的局域网权威,IEEE 802工作组建立的标准在过去二十年内在局域网领域独领风骚。这些协议包括了802.3 Ethernet协议、802.5 Token Ring协议、802.3z 100BASE-T快速以太网协议。在1997年,经过了7年的工作以后,IEEE发布了802.11协议,这也是在无线局域网领域内的第一个国际上被认可的协议。在1999年9月,他们又提出了802.11b“High Rate”协议,用来对802.11协议进行补充,802.11b在802.11的1Mbps和2Mbps速率下又增加了5.5Mbps和11Mbps两个新的网络吞吐速率。利用802.11b,移动用户能够获得同Ethernet一样的性能、网络吞吐率与可用性。这个基于标准的技术使管理员可以根据环境选择合适的局域网技术来构造自己的网络,满足他们的商业用户和其他用户的需求。802.11协议主要工作在ISO协议的最低两层上,并在物理层上进行了一些改动,加入了高速数字传输的特性和连接的稳定性。IEEE802.11工作组制订的具体协议包括以下几项。
IEEE 802.11a
IEEE 802.11a采用正交频分(OFDM)技术调制数据,使用5GHz的频带,避开了当前微波、蓝牙以及大量工业设备广泛采用的2.4GHz频段,因此其产品在无线数据传输过程中所受到的干扰大为降低,抗干扰性较IEEE 802.11b更为出色。高达54Mbps数据传输带宽,是IEEE 802.11a的真正意义所在。IEEE 802.11a已经为今后无线宽带网的进一步要求做好了准备,从长远的发展角度来看,其竞争力是不言而喻的。此外,IEEE 802.11a的无线网络产品较IEEE 802.11b有着更低的功耗,这对笔记本电脑以及PDA等移动设备来说也有着重大意义。
IEEE 802.11a的普及也有其自身的诸多限制。首先,IEEE 802.11a面临的难题是来自厂商方面的压力。眼下,IEEE 802.11b已走向成熟,许多拥有IEEE 802.11b产品的厂商对IEEE 802.11a持谨慎态度。从目前的情况来看,由于这两种技术标准互不兼容,不少厂商为了均衡市场需求,直接将其产品做成了a+b的形式,这种做法固然解决了兼容问题,但也带来了成本增加的负面因素。其次,相关法律法规的限制,使5.2GHz频段无法在全球各个国家获得批准和认可。5.2GHz的高频虽然令IEEE 802.11a具有了低干扰的使用环境,但也带来了不利的一面——太空中数以千计的人造卫星与地面站通信也恰恰使用5.2GHz频段。此外,欧盟也只允许将5.2GHz频率用于其自己制定的另一个无线标准——HiperLAN。
IEEE 802.11b
IEEE 802.11b也被称为Wi-Fi技术,采用补码键控(CCK)调制方式,使用2.4GHz频带。从性能上看,IEEE 802.11b的带宽为11Mbps,实际传输速率在5Mbps左右,与普通的10Base-T规格有线局域网持平。无论是家庭无线组网还是中小企业的内部局域网,IEEE 802.11b都能基本满足使用要求。由于基于的是开放的2.4GHz频段,因此IEEE 802.11b的使用无需申请,既可作为对有线网络的补充,又可自行独立组网,灵活性很强。
从工作方式上看,IEEE 802.11b的运作模式分为两种:点对点模式和基本模式。其中点对点模式是指无线网卡和无线网卡之间的通信方式,即一台装配了无线网卡的计算机可以与另一台装配了无线网卡的计算机进行通信,对于小型无线网络来说,这是一种非常方便的互联方案;而基本模式则是指无线网络的扩充或无线和有线网络并存时的通信方式,这也是IEEE 802.11b最常用的连接方式。此时,装载无线网卡的计算机需要通过接入点(无线AP)才能与另一台计算机连接,由接入点来负责频段管理及漫游等指挥工作。在带宽允许的情况下,一个接入点最多可支持1024个无线节点的接入。当无线节点增加时,网络存取速度会随之变慢。
作为目前最普及、应用最广泛的无线标准,IEEE 802.11b的优势不言而喻。技术的成熟,使得基于该标准网络产品的成本得到了很好的控制,无论家庭还是企业用户,无需太多的资金投入即可组建一套完整的无线局域网。但IEEE 802.11b的缺点也是显而易见的,11Mbps的带宽并不能很好地满足大容量数据传输的需要,只能作为有线网络的一种补充。
IEEE 802.11g
2001年11月,在IEEE 802.11会议上形成了IEEE 802.11g标准草案,目的是在2.4GHz频段实现802.11a的速率要求。802.11g采用PBCC或CCK/OFDM调制方式,使用2.4GHz频段,对现有的IEEE 802.11b系统向下兼容。它既能适应传统的802.11b标准,也符合IEEE 802.11a标准,从而解决了对已有的802.11b设备的兼容。
与IEEE 802.11a相同的是,IEEE 802.11g也使用了Orthogonal Frequency Division Multiplexing(正交分频多任务,OFDM)的模块设计,这是其54Mbps高速传输的秘诀。不同的是,IEEE 802.11g的工作频段并不是IEEE 802.11a的5.2GHz,而是坚守在和IEEE 802.11b一致的2.4GHz频段,这样一来,原先IEEE 802.11b使用者所担心的兼容性问题得到了很好的解决,IEEE 802.11g提供了一个平滑过渡的选择。
除了具备高传输率以及兼容性上的优势外,IEEE 802.11g所工作的2.4GHz频段的信号衰减程度不像IEEE 802.11a的5.2GHz那么严重,并且IEEE 802.11g还具备更优秀的“穿透”能力,能适应更加复杂的使用环境。但是先天性的不足(2.4GHz工作频段),使得IEEE 802.11g和它的前辈IEEE 802.11b一样极易受到微波、无线电话等设备的干扰。此外,IEEE 802.11g的信号比IEEE 802.11b的信号能够覆盖的范围要小得多,用户可能需要添置更多的无线接入点才能满足原有使用面积的信号覆盖。
(2)蓝牙技术
蓝牙技术将成为全球通用的无线技术,它工作在2.4GHz波段,采用的是跳频展频(FHSS)技术,数据速率为1Mbps,距离为10m。任一蓝牙技术设备一旦搜寻到另一个蓝牙技术设备,马上就可以建立联系,而无需用户进行任何设置。在无线电环境非常嘈杂情况下,其优势更加明显。蓝牙技术的主要优点是成本低、耗电量低以及支持数据/语音传输。
(3)HomeRF
HomeRF是专门为家庭用户设计的,它工作在2.4GHz,利用50跳/秒的跳频扩谱方式,通过家庭中的一台主机在移动设备之间实现通信,既可以通过时分复用支持语音通信;又能通过载波监听多重访问/冲突避免协议提供数据通信服务。同时,HomeRF提供了与TCP/IP良好的集成,支持广播、多播和48位IP地址。HomeRF最显著的优点是支持高质量的语音及数据通信,它把共享无线连接协议(SWAP)作为未来家庭内联网的几项技术指标,使用IEEE802.11无线以太网作为数据传输标准。
(4)HyperLAN/HyperLAN2
HyperLAN是ETSI制定的标准,分别应用在2.4GHz和5GHz不同的波段中。与IEEE 802.11最大的不同,在于HyperLAN不使用调变的技术而使用CSMA(Carrier Sense Multiple Access)的技术。HyperLAN2采用Wireless ATM的技术,因此也可以将HyperLAN2视为无线网络的ATM,采用5GHz射频频率,传输速率为54Mbps。
(5)WiMAX
作为宽带无线通信的推动者,美国电气和电子工程师协会(IEEE)于1999年设立IEEE 802.16工作组,工作内容主要是开发固定宽带无线接入系统标准,包括空中接口及其相关功能,标准涵盖2~66 GHz 的许可频段和免许可频段,解决最后一公里的宽带无线城域网的接入问题。随着研究的深入,IEEE相继推出了IEEE 802.16、IEEE 802.16a、IEEE 802.16d、8 IEEE 02.16e等一系列标准,该系列标准引起业界广泛关注,被认为是宽带无线城域网(WMAN)的理想解决方案。为了推广遵循IEEE802.16和ETSI HIPERMAN的宽带无线接入设备,并确保其兼容性及互用性,一些主要的通信部件及设备制造商结成了一个工业贸易联盟组织,即WiMAX,IEEE802.16标准又被称之为WiMAX技术。其最大传输速度为可达到75M bps,最大传输距离可达50km。
(6)GPRS技术
GPRS的英文全称为General Packet Radio Service,中文含义为通用分组无线服务,它是利用“包交换”(Packet-Switched)的概念发展出的一套无线传输方式。所谓的包交换就是将Date封装成许多独立的封包,再将这些封包一个一个传送出去,形式上有点类似寄包裹。采用包交换的好处是只有在有资料需要传送时才会占用频宽,而且可以以传输的资料量计价,这对用户来说是比较合理的计费方式。此外,在GSM phase 2+的标准里,GPRS可以提供四种不同的编码方式,这些编码方式也分别提供不同的错误保护(Error Protection)能力。利用四种不同的编码方式,每个时槽可提供的传输速率为CS-1(9.05K)、CS-2(13.4K)、CS-3(15.6K)及CS-4(21.4K),其中CS-1的保护最为严密,CS-4则是完全未加以任何保护。每个用户最多可同时使用八个时槽,所以GPRS号称最高传输速率为171.2K bps。
GPRS是一种新的GSM数据业务,它在移动用户和数据网络之间提供一种连接,给移动用户提供高速无线IP和X.25分组数据接入服务。GPRS采用分组交换技术,它可以让多个用户共享某些固定的信道资源。如果把空中接口上的TDMA帧中的8个时隙都用来传送数据,那么数据速率最高可达164kb/8。GSM空中接口的信道资源既可以被话音占用,也可以被GPRS数据业务占用。
(7)3G技术
3G是英文3rd Generation的缩写,指第三代移动通信技术。相对第一代模拟制式手机(1G)和第二代GSM、TDMA等数字手机(2G),第三代手机一般地讲,是指将无线通信与国际互联网等多媒体通信结合的新一代移动通信系统。它能够处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务。为了提供这种服务,无线网络必须能够支持不同的数据传输速度,也就是说在室内、室外和行车的环境中能够分别支持至少2Mbps、384kbps以及144kbps的传输速度。
国际电信联盟(ITU)在2000年5月确定了W-CDMA、CDMA2000和TDS-CDMA三大主流无线接口标准,写入3G技术指导性文件《2000年国际移动通讯计划》(简称IMT-2000)。
W-CDMA
W-CDMA即WidebandCDMA,也称为CDMADirectSpread,意为宽频分码多重存取,其支持者主要是以GSM系统为主的欧洲厂商。这套系统能够架设在现有的GSM网络上,对于系统提供商而言可以较轻易地过渡,而GSM系统相当普及的亚洲对这套新技术的接受度会相当高。因此W-CDMA具有先天的市场优势。
CDMA2000
CDMA2000也称为CDMA Multi-Carrier,由美国高通北美公司为主导提出,摩托罗拉、Lucent和后来加入的韩国三星都有参与,韩国现在成为该标准的主导者。这套系统是从窄频CDMA One数字标准衍生出来的,可以从原有的CDMA One结构直接升级到3G,建设成本低廉。但目前使用CDMA的地区只有日、韩和北美,所以CDMA2000的支持者不如W-CDMA多。不过CDMA2000的研发技术却是目前各标准中进度最快的,许多3G手机已经率先面世。
TD-SCDMA
该标准是由中国大陆独自制定的3G标准,1999年6月29日,由中国原邮电部电信科学技术研究院(大唐电信)向ITU提出。该标准将智能无线、同步CDMA和软件无线电等当今国际领先技术融于其中,在频谱利用率、对业务支持的灵活性、频率灵活性及成本等方面有着独特优势。另外,由于中国的庞大市场,该标准受到各大主要电信设备厂商的重视,全球一半以上的设备厂商都宣布可以支持TD-SCDMA标准。