北师版九年级数学下册教案与圆有关的位置关系
和圆有关的位置关系在九年级是一堂重要的课程,关于九年级数学下册教案怎么做呢?下面小编整理了关于北师版九年级数学下册教案与圆有关的位置关系,供你参考。
九年级数学下册教案《直线和圆的位置关系》
1.知识结构
2.重点、难点分析
重点:直线和圆的位置关系的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究“直线和圆的位置关系”的基础.
难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.
3.教法建议
本节内容需要一个课时.
(1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括;
(2)在教学中,以“形”归纳“数”, 以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学.
九年级数学下册教案《相切》
1、教材分析
(1)知识结构
(2)重点、难点分析
重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础.
难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置的确定.
2、教法建议
(1)在教学中,组织学生寻找一些身边的有关“连接”的实际问题,画出比例图,既调动学生的积极性,培养了兴趣,又获得了知识;
(2)在教学中,以“实际问题——概念引出——理解——实际应用”为主线,开展在教师组织下,以学生为主体,活动式教学.相切在作图中的应用(一)
教学目标:
(1)理解线段与弧、弧与弧连接的概念及连接的原理;
(2)通过对 “连接”等概念的教学,培养学生的理解能力;
(3)通过线段与弧的连接,圆弧与圆弧的连接,培养学生的作图能力;
(4)“渗透”世界上很多事物是互相联系着的,并且在一定条件下相互转化.
教学重点:
正确理解连接的原理,初步掌握线段与圆弧连接、圆弧与圆弧连接的实质,会进行各种连接.
教学难点:
连接原理的正确理解和作图时圆心、半径的确定
教学活动设计:
(一)实际问题引出概念
我们在生活中常见到一些机器零件,它的边缘是圆滑的,我们最熟悉的操场上的跑道,它的跑道线也是很圆滑的.
九年级数学下册教案《过三点的圆》
1、教材分析
(1)知识结构
(2)重点、难点分析
重点:①确定圆的定理.它是圆中的基础知识,是确定圆的理论依据;②不在同一直线上的三点作圆.“作圆”不仅体现在证明“确定圆的定理”的重要作用,也是解决实际问题中常用的方法;③反证法证明命题的一般步骤.反证法虽是选学内容,但它是证明数学命题的重要的基本方法之一.
难点:反证法不是直接以题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明原命题正确,又因为矛盾的多样化,学生刚刚接触,所以反证法不仅是本节的难点,也是本章的难点.
2、教学建议
本节内容需要两个课时.在第一课时过三点的圆的教学中:
(1)把课堂活动设计的重点放在如何调动学生的主体和发现问题、解决问题的能力上.让学生作图、观察、分析、概括出定理.
(2)组织学生开展“找直角、锐角和钝角三角形的外心”的位置活动,在激发学生的学习兴趣中,提高作图能力.
(3)在教学中,解决过已知点作圆的问题,应紧紧抓住对圆心和半径的探讨,已知圆心和半径就可以作一个圆,这是从圆的定义引出的基本思路,因此作圆的问题就是如何根据已知条件去找圆心和半径的问题.由于作圆要经过已知点,如果圆心的位置确定了,圆的半径也就随之确定,因此作圆的问题又变成了找圆心的问题,是否可以作圆以及能作多少个圆,都取决于能否确定圆心的位置和圆心的个数.
在第二课时反证法的教学中:
(1)对于A层的学生尽量使学生理解并会简单应用,对B层的学生使学生了解即可.
(2)在教学中老师要精讲:①为什么要用反证法;②反证法的基本步骤;③精讲精练.
猜你感兴趣:
1.北师大版九年级下册数学教案
2.九年级数学点和圆,直线和圆的位置关系同步练习题
3.2016新人教版九年级下册数学教案
4.北师大版初中数学教案
5.北师大版八年级数学下册教案汇总
6.北师大版七年级下册数学教案
7.2016新版北师版一年级数学教案