地球如何形成的 地球成因是什么

2017-04-01

地球是太阳系八大行星之一,按离太阳由近及远的次序排为第三颗,也是太阳系中直径、质量和密度最大的类地行星,关于地球的形成你想了解吗?下面就让小编来给你科普一下地球如何形成的。

地球的形成

46亿年前,地球诞生了。地球演化大致可分为三个阶段。

第一阶段为地球圈层形成时期,其时限大致距今4600至4200Ma。46亿年前诞生时候的地球与21世纪的大不相同。根据科学家推断,地球形成之初是一个由炽热液体物质(主要为岩浆)组成的炽热的球。随着时间的推移,地表的温度不断下降,固态的地核逐渐形成。密度大的物质向地心移动,密度小的物质(岩石等)浮在地球表面,这就形成了一个表面主要由岩石组成的地球。

第二阶段为太古宙、元古宙时期。其时限距今4200-543Ma。地球自不间断地向外释放能量,由高温岩浆不断喷发释放的水蒸气,二氧化碳等气体构成了非常稀薄的早期大气层---原始大气。随着原始大气中的水蒸气的不断增多,越来越多的水蒸气凝结成小水滴,再汇聚成雨水落入地表。就这样,原始的海洋形成了。

第三阶段为显生宙时期,其时限由543Ma至今。显生宙延续的时间相对短暂,但这一时期生物及其繁盛,地质演化十分迅速,地质作用丰富多彩,加之地质体遍布全球各地,广泛保存,可以极好的对其进行观察和研究,为地质科学的主要研究对象,并建立起了地质学的基本理论和基础知识。

人类科学家已经能够重建地球过去有关的资料。太阳系的物质起源于45.672亿±60万年前,而大约在45.4亿年前(误差约1%),地球和太阳系内的其他行星开始在太阳星云——太阳形成后残留下来的气体与尘埃形成的圆盘状——内形成。通过吸积的过程,地球经过1至2千万年的时间,大致上已经完全成形。从最初熔融的状态,地球的外层先冷却凝固成固体的地壳,水也开始在大气层中累积。月亮形成的较晚,大约是45.3亿年前,一颗火星大小,质量约为地球10%的天体(通常称为忒伊亚)与地球发生致命性的碰撞。这个天体的部分质量与地球结合,还有一部分飞溅入太空中,并且有足够的物质进入轨道形成了月球。释放出的气体和火山的活动产生原始的大气层,小行星、较大的原行星、彗星和海王星外天体等携带来的水,使地球的水份增加,冷凝的水产生海洋。新形成的太阳光度只有太阳的70%,但是有证据显示早期的海洋依然是液态的,这称为微弱年轻太阳谬论矛盾。温室效应和较高太阳活动的组合,提高了地球表面的温度,阻止了海洋的凝结。

有两个主要的理论提出大陆的成长:稳定的成长到现代和在早期的历史中快速的成长。研究显示第二种学说比较可能,早期的地壳是快速成长的,随后跟着长期稳定的大陆地区。在时间尺度上的最后数亿年间,表面不断的重塑自己,大陆持续的形成和分裂。在表面迁徙的大陆,偶尔会结成超大陆。大约在7.5亿年前,已知最早的一个超大陆罗迪尼亚开始分裂,稍后又在6亿至5.4亿年时合并成潘诺西亚大陆,最后是1.8亿年前开始分裂的盘古大陆。

地球的地理特征

质量

卡文迪许认为地球的质量约为5.96×10^24千克 地球的赤道半径ra=6378137m≈6378km,极半径rb=6356752m≈6357km,扁率e=1/298.257,忽略地球非球形对称,平均半径r=6371km。在赤道某海平面处重力加速度的值ga=9.780m/s,在北极某海平面处的重力加速度的值gb=9.832m/s,全球通用的重力加速度标准值g=9.807m/s,地球自转周期为23小时56分4秒(恒星日),即T=8.616×10^4s。

温度

地核的温度大约是6880℃,比太阳光球表面温度(5778K,5505°C)要高。地球上最高温度发生在氢弹爆炸中,一次爆炸能达到1亿℃,这温度是太阳表面温度的16667倍,比太阳核心的温度(1400万摄氏度)高多了。地球北半球的“冷极”在东西伯利亚山地的奥伊米亚康,1961年1月的最低温度是-71℃。南半球的“冷极”在南极大陆,1967年初,挪威人在极点站曾经记录到-94.5℃的最低温度。

电性

因为地球自西向东旋转,而地磁场外部是从磁北极指向磁南极(即南极指向北极),所成的环形电流与地球自转的方向相反,所以是带负电的。

形状

月食时,仔细观察就会发现投射在月球上的地球影子总是圆的;往南或往北作长途旅行时,则会发现同一个星星在天空中的高度是不一样的。一些聪明的古人从诸如此类的蛛丝马迹中就已经猜测到地球可能是球形的。托勒玫的地心说也明确地描述了地球为球形的观点,但是直到16世纪葡萄牙航海家麦哲伦的船队完成人类历史上的第一次环球航行,才真正用实践无可辩驳地证明了地球是个球体。

科学家经过长期的精密测量,发现地球并不是一个规则球体,而是一个两极部位略扁赤道稍鼓的不规则椭圆球体,夸张地说,有点像“梨子”,称之为“梨形体”。地球的赤道半径约长6378.137Km,这点差别与地球的平均半径相比,十分微小,从宇宙空间看地球,仍可将它视为一个规则球体。如果按照这个比例制作一个半径为1米的地球仪,那么赤道半径仅仅比极半径长了大约3毫米,凭着人的肉眼是难以察觉出来的,因此在制作地球仪时总是将它做成规则球体。

位置

地球在宇宙中的位置在最近的一个世纪里,这一认识发生了根本性的拓展。起初,地球被认为是宇宙的中心,而当时对宇宙的认识只包括那些肉眼可见的行星和天球上看似固定不变的恒星。17世纪日心说被广泛接受,其后威廉·赫歇尔和其他天文学家通过观测发现太阳位于一个由恒星构成的盘状星系中。到了20世纪,对螺旋状星云的观测显示我们的银河系只是膨胀宇宙中的数十亿计的星系中的一个。到了21世纪,可观测宇宙的整体结构开始变得明朗——超星系团构成了包含大尺度纤维和空洞的巨大的网状结构。超星系团、大尺度纤维状结构和空洞可能是宇宙中存在的最大的相干结构。在更大的尺度上(十亿秒差距以上)宇宙是均匀的,也就是说其各个部分平均有着相同的密度、组分和结构。

宇宙是没有“中心”或者“边界”的,因此我们无法标出地球在整个宇宙中的绝对位置。地球位于可观测宇宙的中心,这是因为可观测性是由到地球的距离决定的。在各种尺度上,我们可以以特定的结构作为参照系来给出地球的相对位置。目前依然无法确定宇宙是否是无穷的。

地球的运动

自转

地球存在绕自转轴自西向东的自转,平均角速度为每小时转动15度。在地球赤道上,自转的线速度是每秒465米。天空中各种天体东升西落的现象都是地球自转的反映。人们最早利用地球自转作为计量时间的基准。自20世纪以来由于天文观测技术的发展,人们发现地球自转是不均的。1967年国际上开始建立比地球自转更为精确和稳定的原子时。由于原子时的建立和采用,地球自转中的各种变化相继被发现。天文学家已经知道地球自转速度存在长期减慢、不规则变化和周期性变化。

地球自转的周期性变化主要包括周年周期的变化,月周期、半月周期变化以及近周日和半周日周期的变化。周年周期变化,也称为季节性变化,是20世纪30年代发现的,它表现为春天地球自转变慢,秋天地球自转加快,其中还带有半年周期的变化。周年变化的振幅为20~25毫秒,主要由风的季节性变化引起。半年变化的振幅为8~9毫秒,主要由太阳潮汐作用引起的。此外,月周期和半月周期变化的振幅约为±1毫秒,是由月亮潮汐力引起的。地球自转具有周日和半周日变化是在最近的十年中才被发现并得到证实的,振幅只有约0.1毫秒,主要是由月亮的周日、半周日潮汐作用引起的。

公转

地球公转的轨道是椭圆的,公转轨道半长径为149597870公里,轨道的偏心率为0.0167,公转的平均轨道速度为每秒29.79公里;公转的轨道面(黄道面)与地球赤道面的交角为23°27',称为黄赤交角。地球自转产生了地球上的昼夜变化,地球公转及黄赤交角的存在造成了四季的交替。

从地球上看,太阳沿黄道逆时针运动,黄道和赤道在天球上存在相距180°的两个交点,其中太阳沿黄道从天赤道以南向北通过天赤道的那一点,称为春分点,与春分点相隔180°的另一点,称为秋分点,太阳分别在每年的春分(3月21日前后)和秋分(9月23日前后)通过春分点和秋分点。对居住的北半球的人来说,当太阳分别经过春分点和秋分点时,就意味着已是春季或是秋季时节。太阳通过春分点到达最北的那一点称为夏至点,与之相差180°的另一点称为冬至点,太阳分别于每年的6月22日前后和12月22日前后通过夏至点和冬至点。同样,对居住在北半球的人,当太阳在夏至点和冬至点附近,从天文学意义上,已进入夏季和冬季时节。上述情况,对于居住在南半球的人,则正好相反。

更多相关阅读

最新发布的文章