实变函数学习心得3篇

2017-01-15

实变函数课在我国高等学校数学系的教学计划中属于专业基础课,是一门承上启下的课。下面是为大家准备的实变函数学习心得体会,希望大家喜欢!

实变函数学习心得体会范文1

学习实变函数这们课已经一个学期了,对于我们数学专业的学生,大学最难的一门课就是实变函数论与实变函数这门课了。我们用的教材难度比较大,所以根据我自己学习这门课的心得与方法,有以下几点:

1、复习并巩固数学分析等基础课程。学习实变函数这门课程要求我们以数学分析为学习基础,因此,想学好这门课必须有相对比较扎实的数学分析基础。

2、课前预习。实变函数是一门比较难的课程,龙老师上课也讲得比较快、比较抽象,因此,适当的预习是必要的,了解老师即将讲什么内容,相应地复习与之相关内容。如果能够做到这些,那么你的学习就会变得比较主动、深入,会取得比较好的效果。

3、上课认真听讲,认真做笔记。龙老师是一位博学的老师,上课内容涵盖许多知识。因此,上课应注意老师的讲解方法和思路,其分析问题和解决问题的过程,记好课堂笔记,实变函数这门课比较难,所以建议听课是一个全身心投入——听、记、思相结合的过程。

4、课后复习,做作业,做练习。我们作为大三的学生,我们要学会抓住零碎的时间复习实变函数课堂的学习内容,巩固学习。复习不是简单的重复,应当用自己的表达方式再现所学的知识,例如对某些定理证明的复习,不是再读一遍书或课堂笔记,而是离开书本和笔记,回忆有关内容,理解并掌握其证明思路。做作业、做练习时,大家要重视基本概念和基本原理的理解和掌握,不要一头扎进题海中去。

所以,我们学习实变函数总的来说要把握课前、课时与课后的任务,学习内容要多下功夫掌握基本概念和原理及其证明思路,尽可能地掌握作业题目,在记忆的基础上理解,在完成练习中深化理解,在比较中构筑知识结构的框架,是提高学习实变函数课程效率的重要途径。

实变函数学习心得体会范文2

古语有云:微机原理闹危机,汇编语言不会编,随机过程随机过,量子力学量力学,实变函数学十遍。其它的不好说,这实变函数确实要多看几遍的。虽然我曾旁听过这门课,但是对于其中的种种总感觉模模糊糊,不甚明了。前几日在网上down了一个完整的教学视频,便想着把这门课重新来过,遂借着这片地方留下一些印记,好督促自己万不可半途而废。

1、集合列的极限有上下极限之分,只有当上下极限相等时,才称集合列存在极限。对于上极限可以这样定义:

{x|x属于无穷多个An}.“无穷多”是用文字语言来进行形象的描述,那么转换成数学的语言应该是怎样的呢?类比数学分析中的聚点原理,我们可以假设若x属于某个Am,那么一定可以找到m'>m,使得x也属于m',如若不然,x就属于有限个集合,而不是无穷多个了。上述的描述翻译成数学的语言就是:对于任给的n,总能找到一个m>n,使得x属于Am,再换成集合论的表示方式就非常简单了。

2、至于下极限,它可以定义为:除去集列中有限个下标外,属于集列中每个集合的元素之全体所组成的集合。类比数学分析中的ε-N语言,假设有限个下标中最大的那个下标为n,则对于任意的k>n,总有x属于Ak,将这段话翻译成集合论的语言应该是非常容易的事情了。

3、为什么单调列一定存在极限?以单调递增集合列为例:因为是升列,故Ak(k=n,n+1,...)的交集就等于An,这样下极限就化为:∪Ak(k=1...∞),而Ak(k=n,n+1,...)的并集也等于∪Ak(k=1...∞),这是因为Ak是升列,所以在前面再并上有限项并不影响最终的结果,从而上极限也化为了∪Ak(k=1...∞),故上下极限相等,极限存在且为∪Ak(k=1...∞)。单调减集合列与此类同。

实变函数学习心得体会范文3

泛函分析是继实变函数论后的一门课程,是实变函数论的后继,主要涉及赋范空间,有界线性算子、泛函、内积空间、泛函延拓、一致有界性以及线性算子的谱分析理论等内容。可以说数字到数字的映射产生函数,而函数到函数的映射产生泛函,因此泛函分析是一门十分抽象的课程,学起来比较吃力。

在本学期上半阶段我们主要跟邓博士学习了第一章距离空间和第二章Banach空间上的有界线性算子。在距离空间里最主要是掌握距离空间的定义。 定义:设X是一集合, 是x × x到Rn的映射,满足:

(1) (非负性) (x,y)≥0 且 (x,y)=0,当且仅当x=y

(2) (对称性) (x,y)= (y,x)

(3) (三角不等式) (x,z)≤ (x,y)+ (y,z)

则称X为距离空间,记为(X, ),有时简记为X。

由距离空间可以进一步定义出线性距离空间,线性赋范空间,接着进一步研究距离空间的完备性,其中度量空间、赋范线性空间、巴拿赫空间之间关系弄清楚了那么本节课也就掌握了;

度量空间、赋范线性空间、巴拿赫空间的区别与联系。

赋范线性空间一定是度量空间,反之不一定成立。度量空间按照加法和数乘运算成为线性空间,而且度量空间中的距离如果是由范数导出的,那么这个度量空间就是赋范线性空间。

赋范线性空间与巴拿赫空间的联系与区别:完备的赋范线性空间是巴拿赫空间。巴拿赫空间一定是赋范线性空间,反之不一定成立。

巴拿赫空间一定是度量空间,反之不一定成立。巴拿赫空间满足度量空间的所有性质。巴拿赫空间由范数导出距离,而且满足加法和数乘的封闭性。满足完备性,则要求每个柯西点列都在空间中收敛。

度量空间中距离要满足三个性质:非负线性、对称性、三点不等式,因此距离 (x,y)的定义是重点。赋范线性空间中范数要满足:非负性、正齐性、三角不等式,距离定义和范数的定义是关键。

在第一章中还有两个重要的空间,内积空间和希尔伯特空间,内积空间是特殊的线性赋范空间,而完备的内积空间被称为希尔伯特空间,其上的范数由一个内积导出。因此只要弄清楚了度量空间、赋范线性空间、巴拿赫空间,内积空间和希尔伯特空间学习第一章就没什么难度了。

有界线性算子及其范数,在两个线性赋范空间上定义一个映射,这个映射就是线性赋范空间的线性算子,由线性算子又派生出有界线性算子,由范数的计算导出算子空间,第一二章就由线性赋范空间紧密串联起来。

泛函分析作为一门科学,它是从解决实际问题的需要产生的。决定一个物理系统的状态的参数的个数叫做这个系统的自由度。在质点力学中,常遇到具有穷自由度的系统。但在连续介质力学中,往往遇到具无穷自由度的力学系统(例如振动的梁)。无穷维空间正是反映具无穷自由度的系统的数学概念。因此学好泛函分析为研究物理学提供了重要的方法;Banach不动点原理在证明数值分析中应用了迭代法原理,这也说明了微积分学为泛函分析提供了证明方法,那么反过来,泛函分析也可以为微积分学的研究提供重要方法。

更多相关阅读

最新发布的文章