固体物理重点概念

2017-01-13

固体物理力学是物理力学的一个分支,是从固体的微观结构理论出发,探求固体宏观力学性质的学科。以下是小编分享给大家的关于固体物理重点概念,希望能给大家带来帮助!

固体物理重点概念:

晶体:是由离子,原子或分子(统称为粒子)有规律的排列而成的,具有周期性和对称性 非晶体:有序度仅限于几个原子,不具有长程有序性和对称性 点阵:格点的总体称为点阵

晶格:晶体中微粒重心,周期性的排列所组成的骨架,称为晶格

格点:微粒重心所处的位置称为晶格的格点(或结点)

晶体的周期性和对称性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质称为晶体结构的周期性。晶体的对称性指晶体经过某些对称操作后,仍能恢复原状的特性。(有轴对称,面对称,体心对称即点对称)

密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的密勒指数

配位数:可用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数

致密度:晶胞内原子所占体积与晶胞总体积之比称为点阵内原子的致密度

固体物理学元胞:选取体积最小的晶胞,称为元胞:格点只在顶角,内部和面上都不包含其他格点,整个元胞只含有一个格点:元胞的三边的平移矢量称为基本平移矢量(或者基矢);突出反映晶体结构的周期性

元胞:体积通常较固体物理学元胞大;格点不仅在顶角上,同时可以在体心或面心上;晶胞的棱也称为晶轴,其边长称为晶格常数,点阵常数或晶胞常数;突出反映晶体的周期性和对称性。

布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合而且每个格点周围的情况都一样

复式格子:晶体由两种或者两种以上的原子构成,而且每种原子都各自构成一种相同的布拉菲格子,这些布拉菲格子相互错开一段距离,相互套购而形成的格子称为复式格子,复式格子是由若干相同的布拉菲格子相互位移套购而成的

声子:晶格简谐振动的能量化,以hvl来增减其能量,hvl就称为晶格振动能量的量子叫声子

非简谐效应:在晶格振动势能中考虑了δ2以上δ高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导

点缺陷的分类:晶体点缺陷:①本征热缺陷:弗伦克尔缺陷,肖脱基缺陷②杂质缺陷:置换型,填隙型③色心④极化子布里渊区:在空间中倒格矢的中垂线把空间分成许多不同的区域,在同一区域中能量是连续的,在区域的边界上能量是不连续的,把这样的区域称为布里渊区

爱因斯坦模型在低温下与实验存在偏差的根源是什么?

答:按照爱因斯坦温度的定义,爱因斯坦模型的格波的频率大约为1013Hz,属于光学支频率,但光学格波在低温时对热容的贡献非常小,低温下对热容贡献大的主要是长声学格波,也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源。

陶瓷中晶界对材料性能有很大的影响,试举例说明晶界的作用

答:晶界是一种面缺陷,是周期性中断的区域,存在较高界面能和应力,且电荷不平衡,故晶界是缺陷富集区域,易吸附或产生各种热缺陷和杂质缺陷,与体内微观粒子(如电子)相比,晶界微观粒子所处的能量状态有明显差异,称为晶界态。

在半导体陶瓷,通常可以通过组成,制备工艺的控制,使晶界中产生不同起源的受主态能级,在晶界产生能级势垒,显著影响电子的输出行为,使陶瓷产生一系列的电功能特性(如PTC特性,压敏特性,大电容特性等)。这种晶界效应在半导体陶瓷的发展中得到了充分的体现和应用。

从能带理论的角度简述绝缘体,半导体,导体的导电或绝缘机制

答:⑴在金属能带中,价带与导带迭合,价带中存在空能级或者价带全满但导带中有电子,故电子易迁移进入较高能量状态的空能级中,金属具有优异的导电性⑵在绝缘体的能带中,其价带全部填满,而导带全部为空能级,在价带与导带之间存在很宽的禁带(>3.0eV),因而电子难以由价带跃迁到导带中,绝缘体的导电性很差⑶半导体的能带结构与绝缘体相似,但其禁带较窄(<3.0eV),因而在外电场激发下(如热激发),电子可由价带跃进导带中而导电,如果在禁带中靠近导带(或价带)的位置引入附加能级(施主或受主)将显著提高半导体的导电性.

画出钙钛矿的晶体结构,并指出它是由哪几种布拉菲格子组成的.

答:此为钙钛矿结构(BaTiO3,SrTiO3等),A,B,O1,O2,O3各自组成5个简单立方布氏格子套购而成。

试从结合键的角度说明水在结冰是何以会膨胀?

答:水结成冰,是从液态往固态转化,形成晶体结构,晶格与晶格之间是通过氢键结合,氢原子不但与一个氧原子结合成共价键O-H,而且还和另一个氧原子结合,但结合较弱,键较长,用O-H表示,氧原子本身则组成一个四面体。

经典的自由电子理论的要点,用其解释金属的电性能

答:要点:金属晶体就是靠自由价电子和金属离子所形成的点阵间的相互作用而结合在一起的,这种相互作用称为金属键.

⑴金属中存在大量可自由运动的电子,其行为类似理想气体⑵电子气体除与离子实碰撞瞬间外,其他时间可认为是自由的⑶电子←→电子之间的相互碰撞(作用)忽略不计⑷电子气体通过与离子实的碰撞而达到热平衡,电子运动速度分布服从M—B经典分布.

在金属中的自由价电子的数目是较多的且基本上不随温度而变,所以当温度升高的时候,金属电导率的变化主要取决去电子运动的速度.因为晶格中的原子和离子不是静止的,它们在晶格的格点上作一定的振动,且随温度升高这种振动会加剧,证实这种振动对电子的流动起着阻碍作用,温度升高,阻碍作用加大,电子迁移率下降,电导率自然也下降了

索莫非量子理论的成功之处

答:金属中的电子不受任何其他外力的作用,彼此间也无相互作用,可把它看成是在一个长,宽,高,分别为a,b,c的方匣子中运动的自由离子,在金属内部每一个电子的势能是一个常数(或0),在边界处和边界外面的势能则为无穷大,所以可把金属中的电子看成是在具有一定深度势阱中运动的自由电子,把这样一个体系作为三维势箱中的平动子来考虑.

成功之处:1解释了金属键的本质;2对电子的比热问题进行了较好的解释

长光学支格波与长声学支格波本质上有何差异?

答:长光学支格波的特征是每个元胞内的不同原子做相对振动,振动频率较高,它包含了晶格振动频率最高的振动模式,长声学支格波的特征是元胞内的不同原子没有相对位移,元胞做整体运动,振动频率较低,它包含了晶格振动频率最低的振动模式,波速是一常数,任何晶体都存在声学支格波,但简单晶格(非复式格子)晶体不存在光学支格波.

从导电率的角度简述绝缘体,半导体,导体的导电或绝缘机制

答:⑴从电导率角度讲,由于金属的可自由移动电子较多,所以电导率很大,并且电导率随着温度的升高而降低.⑵从电导率角度讲,由于绝缘体的可自由移动电子很少,所以电导率很小,并且电导率随着温度的升高而升高.

按缺陷在空间分布的情况,对晶体的缺陷进行分类,并举例说明掺杂对材料结构和性能的影响

答:①点缺陷:本征热缺陷(弗伦克尔缺陷,肖脱基缺陷),杂质缺陷(置换,填隙),色心,极化子.线缺陷:刃性位错,螺旋位错;面缺陷:小角晶界,晶界,堆积缺陷;体缺陷:孔洞,聚集,微裂纹②在Fe中掺杂C,使C聚集在晶界,提高Fe的韧性;在Si中掺杂微量P,B等元素能使Si成为半导体,电导率得到大幅度提高;在白宝石Al2O3晶体中掺杂Cr替代Al,可由白宝石变成红宝石,改变Al2O3晶体的光学特性

简述石墨的结构特点,并说明其结构与性能的关系

答:石墨晶体,是金刚石的同素异构体,组成石墨的一个碳原子以其最外层的三个价电子与其最近邻的三个原子组成共价键结合,这三个键几乎在同意平面上,使晶体呈层状;另一个价电子则较自由的在整个层中运动,具有金属键的性质,这是石墨具有较好导电本领的根源层与层之间又依靠分子晶体的瞬时偶极矩的互作用而结合,这又是石墨质地疏松的根源.

简述离子晶体中缺陷对电导率有何影响?

答:由于离子晶体是正负离子在库仑力的作用下结合而成的,因而使离子晶体中点缺陷带有一定的电荷,这就引起离子晶体的点缺陷具有一般点缺陷没有的特性,理想的离子晶体是典型的绝缘体,满价带与空带之间有很宽的禁带,热激发几乎不可能把电子由满价带激发到空带上去,但实际上离子晶体都有一定的导电性,其电阻明显地依赖于温度和晶体的纯度.因为温度升高和掺杂都可能在晶体中产生缺陷,所以可以断定离子晶体的导电性与缺陷有关.

从能带理论可以这样理解离子晶体的导电性:离子晶体中带点的点缺陷可以是束缚电子或空穴,形成一种不同于布洛赫的局域态.这种局域态的能级处于满带和空带的能隙中,且离空带的带地或者满带的带顶较近,从而可能通过热激发向空带提供电子或接受满带电子,使离子晶体表现出类似于半导体的导电特性.

为什么组成晶体的粒子(分子,原子或离子)间的互作用力除吸引力还要排斥力?排斥力的来源是什么?答:电子云重叠——泡利不相容原理

排斥力的来源:相邻的原子靠的很近,以至于它们内层闭合壳层的电子云发生重叠时,相邻的原子间使产生巨大排斥力,也就是说,原子间的排斥作用来自相邻原子内层闭合壳层电子云的重叠。

本征半导体的能带与绝缘体的能带有何异同?

答:在低温下,本征半导体的能带与绝缘体的能带结构相同,但本征半导体的禁带较窄,禁带宽度通常小于2eV,由于禁带窄,本征半导体禁带下满带项的电子可以借助热激发,跃迁到禁带上面空带的底部,使得满带不满,空带不空,二者都对导电有贡献。

试述范德瓦尔斯力的起源和特点

答:范德瓦尔斯力:是分子间微弱的相互作用力,主要由静电力(偶极子-偶极子相互作用)(极性分子之间),诱导力(偶极子-诱导偶极子相互作用)(极地分子和非极地分子之间),色散力(非极性分子的诱导偶极子-诱导偶极子的相互作用)之间的相互作用而结合;

特点:①存在于所有分子间②作用范围在几个A内③没有方向性和饱和性④不同分子中,静电力,诱导力和色散力所占比例不同,一般色散力所占比例较大。

为什么形成一个肖特基缺陷所需能量比形成一个弗伦克尔缺陷所需能量低?

答:形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子,因此形成一个肖特基缺陷所需的能量,可以看成晶体表面一个原子与其他原子的相互作用能,和晶体内部一个原子与其他原子的相互作用能的差值,形成一个弗伦克尔缺陷是,晶体内留下一个空位,多一个填隙原子,因此形成一个弗伦克尔缺陷所需的能量,可以看成晶体内部一个填隙原子与其他原子的相互作用能,和晶体内部一个原子与其他原子相互作用能的差值,填隙原子与相邻原子的距离非常小,它与其他原子的排斥力的相互作用能是负值,所以填隙原子与其它原子相互作用能的绝对值,比晶体表面一个原子与其他原子 相互作用能的绝对值要小,也就是说形成一个肖特基缺陷所需能量比形成一个弗伦克尔所需能量要低。

为什么金属具有延展性而原子晶体和离子晶体却没有延展性?

答:正离子间可流动的“电子海”,对原子移动时克服势垒起到“调剂”作用。因此,原子间(主要是密置层间)比较容易相对位移,从而使金属有较好的延展性和可塑性。原子晶体具有方向性和饱和性;离子晶体间相对位移出现同号相邻现象,产生斥力

设晶体只有弗伦克尔缺陷,填隙原子的振动频率,空位附近原子的振动频率与无缺陷时原子的振动频率有什么异同?

答:正常格点的原子脱离晶格位置变成填隙原子,同时原格点成为空位,这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗伦克尔缺陷,填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大,因为原子的振动频率与原子间力系数的开根数成正比,所以填隙原子的振动频率比正常格点原子的振动频率要高,空位附近原子与空位另一边原子的距离比正常格点原子间的距离大得多,它们之间的力系数比正常格点原子间的力系数小得多,所以空位附近原子的振动频率比正常格点原子的振动频率要低。

试从金属键的结合特性说明,何以多数金属形成密集结构?

答:金属结合中,受到最小能量原理的约束,要求原子实与共有电子电子云间的库伦能要尽可能的低(绝对值尽可能的大)原子实越紧凑,原子实与共有电子电子云靠的就越紧密,库伦能就越低,所以,许多金属的结构为密积结构

在讨论晶体的结合时,有时说,由于电子云的交叠使互作用能减小,出现引力,形成稳定结构;有事又说,由于电子云的交叠,使原子间初相斥力,这两种说法有无矛盾?

答:共价结合,形成共价键的配对电子,它们的自旋方向相反,这两个电子的电子云交迭使得体系的能量降低,结构稳定,但当原子靠的很近时,原子内部充满壳层电子的电子云交叠,量子态相同的电子产生巨大的排斥力,使得系统的能量急剧增大。

更多相关阅读

最新发布的文章