高一数学必修5数列知识点总结

2017-05-27

数列在高一数学必修5教科书上占据一整章的篇幅,有哪些知识点需要学习?下面是小编给大家带来的高一数学必修5数列知识点,希望对你有帮助。

高一数学必修5等差数列知识点

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列的通项公式为:

an=a1+(n-1)d (1)

前n项和公式为:

Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。

且任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,且m+n=p+q,则有

am+an=ap+aq

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

和=(首项+末项)×项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

等差数列的应用:

日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别

时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。

若为等差数列,且有an=m,am=n.则a(m+n)=0。

高一数学必修5等比数列知识点

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。

(1)等比数列的通项公式是:An=A1*q^(n-1)

若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。

(2)求和公式:Sn=nA1(q=1)

Sn=A1(1-q^n)/(1-q)

=(a1-a1q^n)/(1-q)

=a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n)

(前提:q不等于 1)

任意两项am,an的关系为an=am·q^(n-m)

(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中项:aq·ap=ar*2,ar则为ap,aq等比中项。

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是―同构‖的。

性质:

①若 m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;

②在等比数列中,依次每 k项之和仍成等比数列.

―G是a、b的等比中项‖―G^2=ab(G≠0)‖.

(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)

在等比数列中,首项A1与公比q都不为零.

注意:上述公式中A^n表示A的n次方。

等比数列在生活中也是常常运用的。

如:银行有一种支付利息的方式---复利。

即把前一期的利息赫本金价在一起算作本金,

在计算下一期的利息,也就是人们通常说的利滚利。

按照复利计算本利和的公式:本利和=本金*(1+利率)^存期

高一数学必修5数列例题

1已知数列:(An),Sn=3an+2,求证,An是等比数列。

解:当n=1时 a1=3a1+2 得a1=-1

当n>=2时 有Sn=3an+2 ………………1式

S(n-1)=3a(n-1)+2 (括号代表下标 下同)…………2式

1式-2式 得 an=3an-3a(n-1) 【an=Sn-S(n-1)】

所以 3a(n-1)=2an an=3/2a(n-1)

所以{an}是以-1为首项 以3/2为公比的等比数列

2已知等差数列{AN}的前N项和为SN,且A3=5,S15=225.数列{BN}是等比数列,B3=A2+A3,B2B5=128.

(1)求数列{AN}的通项AN及数列{BN}的前9项的和T9

解 1.设等差数列an的首项为a1,公差为d;等比数列首项b1,公比为q

a3=a1+2d=5

s15=(a1+a15)*15/2=(a1+a1+14d)*15/2=225

解出a1=1 d=2

所以数列an通项公式an=a1+(n-1)d=2n-1

可以求出a2=3,a3=5,所以b3=8

b3=b1q^2=8

b2b5=(b1q)*(b1q^4)=b1^2*q^5=128

解出b1=1 q=2

所以bn=b1*q^(n-1)=2^(n-1)

tn=a1(1-q^n)/(1-q)=2^n-1

所以t9=2^9-1=511

更多相关阅读

最新发布的文章