高一数学必修一函数的应用题及答案解析

2017-06-12

在普通高中课程中,函数的应用一直是重点,下面是小编给大家带来的高一数学必修一函数的应用题及答案解析,希望对你有帮助。

高一数学函数的应用题及答案解析

1.设U=R,A={x|x0},B={x|x1},则A?UB=( )

A{x|01} B.{x|0

C.{x|x0} D.{x|x1}

【解析】 ?UB={x|x1},A?UB={x|0

【答案】 B

2.若函数y=f(x)是函数y=ax(a0,且a1)的反函数,且f(2)=1,则f(x)=( )

A.log2x B.12x

C.log12x D.2x-2

【解析】 f(x)=logax,∵f(2)=1,

loga2=1,a=2.

f(x)=log2x,故选A.

【答案】 A

3.下列函数中,与函数y=1x有相同定义域的是( )

A.f(x)=ln x B.f(x)=1x

C.f(x)=|x| D.f(x)=ex

【解析】 ∵y=1x的定义域为(0,+).故选A.

【答案】 A

4.已知函数f(x)满足:当x4时,f(x)=12x;当x4时,f(x)=f(x+1).则f(3)=( )

A.18 B.8

C.116 D.16

【解析】 f(3)=f(4)=(12)4=116.

【答案】 C

5.函数y=-x2+8x-16在区间[3,5]上( )

A.没有零点 B.有一个零点

C.有两个零点 D.有无数个零点

【解析】 ∵y=-x2+8x-16=-(x-4)2,

函数在[3,5]上只有一个零点4.

【答案】 B

6.函数y=log12(x2+6x+13)的值域是( )

A.R B.[8,+)

C.(-,-2] D.[-3,+)

【解析】 设u=x2+6x+13

=(x+3)2+44

y=log12u在[4,+)上是减函数,

ylog124=-2,函数值域为(-,-2],故选C.

【答案】 C

7.定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是( )

A.y=x2+1 B.y=|x|+1

C.y=2x+1,x0x3+1,x0 D.y=ex,x0e-x,x0

【解析】 ∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y=x3+1在(-,0)上为增函数.故选C.

【答案】 C

8.设函数y=x3与y=12x-2的图象的交点为(x0,y0),则x0所在的区间是( )

A.(0,1) B.(1,2)

C(2,3) D.(3,4)

【解析】 由函数图象知,故选B.

【答案】 B

9.函数f(x)=x2+(3a+1)x+2a在(-,4)上为减函数,则实数a的取值范围是( )

A.a-3 B.a3

C.a5 D.a=-3

【解析】 函数f(x)的对称轴为x=-3a+12,

要使函数在(-,4)上为减函数,

只须使(-,4)?(-,-3a+12)

即-3a+124,a-3,故选A.

【答案】 A

10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是( )

A.y=100x B.y=50x2-50x+100

C.y=502x D.y=100log2x+100

【解析】 对C,当x=1时,y=100;

当x=2时,y=200;

当x=3时,y=400;

当x=4时,y=800,与第4个月销售790台比较接近.故选C.

【答案】 C

11.设log32=a,则log38-2 log36可表示为( )

A.a-2 B.3a-(1+a)2

C.5a-2 D.1+3a-a2

【解析】 log38-2log36=log323-2log3(23)

=3log32-2(log32+log33)

=3a-2(a+1)=a-2.故选A.

【答案】 A

12.已知f(x)是偶函数,它在[0,+)上是减函数.若f(lg x)f(1),则x的取值范围是( )

A.110,1 B.0,110(1,+)

C.110,10 D.(0,1)(10,+)

【解析】 由已知偶函数f(x)在[0,+)上递减,

则f(x)在(-,0)上递增,

f(lg x)f(1)?01,或lg x0-lg x1

?110,或0-1?110,

或110

x的取值范围是110,10.故选C.

【答案】 C

点击下一页分享更多高一数学必修一函数的应用题及答案解析

更多相关阅读

最新发布的文章