8年级上册数学第二章作业本答案

2016-12-26

作业本是辅助学生学习的重要途径,接下来是小编为大家带来的8年级上册数学第二章作业本答案,供大家参考。

8年级上册数学第二章作业本答案:

2.1图形的轴对称作业本2答案

1、①

2、A

3、略

4、8 cm²

5、(1)垂直

(2)AB = 4,BC = 5

(3)略

6、(1)作线段AB,与直线l交于点D,点D就是奶吧所在位置

(2)作点A关于直线l的对称点A',连结A'C,交直线l于点D,点D就是奶吧所在位置

2.2等腰三角形作业本1答案

1、(1)B

(2)4

2、3个;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC

3、15 cm,15 cm,5 cm

4、由题意得,∠BAD = ∠CAD。由于M,N分别是AB,AC的中点,而AB = AC,所以AM = AN。又因为AD = AD,从而得△AMD ≌ △AND。因此DM = DN

5、(1)略

(2)CF = 1.5 cm

6、∵ AB = AC,BE = CD,

∴ AD = AE

又∵ ∠A = ∠A,

∴ △ABD ≌ △ACE(SAS)。得BD = CE

*7、共有5个点,图中点C1,C2,C3,C4,C5均可

第2章 特殊三角形

2.AB 与CD 平行.量得线段BD 的长约为2cm,所以两电线杆间的距离约为120m

【2.1】3.15cm 4.略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.1.B∵ AE∥CF, ∴ ∠AEB=∠CFD. ∴ △AEB≌△CFD,2.3个;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC∴ AE=C

F3.15cm,15cm,5cm 4.16或176.AB=BC.理 由 如 下:作 AM ⊥l5.如图,答案不唯一,图中点C1,C2,C3均可2于 M,BN ⊥l3于 N,则 △ABM ≌△BCN,得AB=BC6.(1)略 (2)CF=15cm7.AP 平分∠BAC.理由如下:由 AP 是中线,得 BP=复习题PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.50 2.(1)∠4 (2)∠3 (3)∠1 ∴ ∠BAP=∠CAP(第5题)3.(1)∠B,两直线平行,同位角相等

【2.2】(2)∠5,内错角相等,两直线平行(3)∠BCD,CD,同旁内角互补,两直线平行1.(1)70°,70° (2)100°,40° 2.3,90°,50° 3.略4.(1)90° (2)60°4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=50° 5.40°或70°5.AB∥CD.理由:如图,由∠1+∠3=180°,得6.BD=CE.理由:由AB=AC,得∠ABC=∠ACB.(第又∵∠3=72°=∠25题) ∠BDC=∠CEB=90°,BC=CB,∴ △BDC≌△CEB(AAS). ∴ BD=CE6.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠B=180°.(本题也可用面积法求解)∴ ∠B=65°7.∠A+∠D=180°,∠C+∠D=180°,∠B=∠D

【2.3】8.不正确,画图略1.70°,等腰 2.3 3.70°或40°9.因为∠EBC=∠1=∠2,所以DE∥BC.所以∠AED=∠C=70°4.△BCD 是等腰三角形.理由如下:由BD,CD 分别是∠ABC,∠ACB 的平50 分线,得∠DBC=∠DCB.则DB=DC

【2.4】略

【2.5(1)】5.∠DBE=∠DEB,DE=DB=56.△DBF 和△EFC 都是等腰三角形.理由如下:1.C 2.45°,45°,6 3.5∵ △ADE 和△FDE 重合, ∴ ∠ADE=∠FDE.4.∵ ∠B+∠C=90°, ∴ △ABC 是直角三角形∵ DE∥BC, ∴ ∠ADE=∠B,∠FDE=∠DFB,5.由已知可求得∠C=72°,∠DBC=18°∴ ∠B=∠DFB. ∴ DB=DF,即△DBF 是等腰三角形.6.DE⊥DF,DE=DF.理由如下:由已知可得△CED≌△CFD,同理可知△EFC 是等腰三角形∴ DE=DF.∠ECD=45°, ∴ ∠EDC=45°.同理,∠CDF=45°,7.(1)把120°分成20°和100° (2)把60°分成20°和40°∴ ∠EDF=90°,即DE⊥DF

【2.5(2)】1.(1)3 (2)51.D 2.33° 3.∠A=65°,∠B=25° 4.DE=DF=3m2.△ADE 是等边三角形.理由如下: ∵ △ABC 是等边三角形,∴ ∠A=∠B=∠C=60°. ∵ DE∥BC, ∴ ∠ADE=∠B=60°,5.由BE=12AC,DE=12AC,得BE=DE 6.135m∠AED=∠C=60°,即∠ADE=∠AED=∠A=60°3.略

【2.6(1)】4.(1)AB∥CD.因为∠BAC=∠ACD=60°1.(1)5 (2)12 (3)槡5 2.A=225(2)AC⊥BD.因为AB=AD,∠BAC=∠DAC5.由AP=PQ=AQ,得△APQ 是等边三角形.则∠APQ=60°.而 BP=3.作一个直角边分别为1cm和2cm的直角三角形,其斜边长为槡5cmAP, ∴ ∠B=∠BAP=30°.同理可得∠C=∠QA C=30°.4. 槡2 2cm (或槡8cm) 5.169cm2 6.18米∴ ∠BAC=120°7.S梯形BCC′D′=1(C′D′+BC)2BD′=1(a+b)2,6.△DEF 是等边三角形.理由如下:由 ∠ABE+ ∠FCB= ∠ABC=60°,22∠ABE=∠BCF,得∠FBC+∠BCF=60°. ∴ ∠DFE=60°.同理可S梯形BCC′D′=S△AC′D′+S△ACC′+S△ABC=ab+12c2.得∠EDF=60°, ∴ △DEF 是等边三角形由1(a+b)2=ab+17.解答不唯一,如图22c2,得a2+b2=c2

【2.6(2)】1.(1)不能 (2)能 2.是直角三角形,因为满足m2=p2+n2 3.符合4.∠BAC,∠ADB,∠ADC 都是直角(第7题)5.连结BD,则∠ADB=45°,BD= 槡32. ∴ BD2+CD2=BC2,∴ ∠BDC=90°. ∴ ∠ADC=135°

第二单元作业本答案

9, 如图,在ABC中, ∠C=29°D为AC上一点,且AB=AD,DB=DC,求∠A的度数。10, 如图,点D,E在△ABC的边BC上,若AD=AE,BD=CE,则AB=AC。请说明理由、。13, 如图, 已知AB=AC,∠B=∠C,则BD=CD 。请说明理由。15, 如图, AC,BD交于点O。已知∠A=∠C=90°, AC=BD。试说明OB=OC。

更多相关阅读

最新发布的文章