关于数学的手抄报一年级图片
数学是一种精神,一种理性的精神。正是这种精神,激发、促进、鼓舞并驱使人类的思维得以运用到最完善的程度,亦正是这种精神,试图决定性地影响人类的物质、道德和社会生活;试图回答有关人类自身存在提出的问题;努力去理解和控制自然;尽力去探求和确立已经获得知识的最深刻的和最完美的内涵。下面小编带給大家的是关于数学的手抄报一年级图片:
关于数学的手抄报一年级资料1:数学学习中的“听”
听老师上课,主要是听老师上课的思路,即发现问题、明确问题、提出假设、检验假设的思维过程。既要听老师讲解、分析时的每一句话,更要抓住重点,听好关键性的步骤,特别是自己预习教材时发现或产生的疑难问题。
倾听和接受他人的数学思想和方法,不仅是听老师上课,还包括听同学的发言。同学间的思想交流更 能引起共鸣。从中可以了解其他同学学习数学和思考问题的方法,加之老师适时的点拨和评价,有利于自己开阔思路、激发思考、澄清思维、引起反思。学会倾听老 师和同学的意见,反思自己的想法,有助于发展学生良好的个性,培养团结协作的精神,增强群体凝聚力。
关于数学的手抄报一年级图片:
关于数学的手抄报一年级图片一
关于数学的手抄报一年级图片二
关于数学的手抄报一年级资料2:数学趣味知识“莫比乌斯带”的神奇
曾作过著名数学家高斯助教的莫比乌斯在1858年与另一位数学家各自独立发现了单侧的曲面,其中最闻名的是“莫比乌斯带”。如果想制作这种曲面,只要取一片长方纸条,把一个短边扭转180°,然后把这边跟对边粘贴起来,就形成一条“莫比乌斯带”。当用刷子油漆这个图形时,能连续不断地一次就刷遍整个曲面。如果一个没有扭转过的带子一面刷遍了,要想把刷子挪到另一面,就必须把刷子挪动跨过带子的一条边沿。
“莫比乌斯带”有点神秘,一时又派不上用场,但是人们还是根据它的特性编出了一些故事,据说有一个小偷偷了一位很老实农民的东西,并被当场捕获,将小偷送到县衙,县官发现小偷正是自己的儿子。
于是在一张纸条的正面写上:小偷应当放掉,而在纸的反面写了:农民应当关押。县官将纸条交给执事官由他去办理。聪明的执事官将纸条扭了个弯,用手指将两端捏在一起。然后向大家宣布:根据县太爷的命令放掉农民,关押小偷。县官听了大怒,责问执事官。执事官将纸条捏在手上给县官看,从“应当”二字读起,确实没错。仔细观看字迹,也没有涂改,县官不知其中奥秘,只好自认倒霉。
县官知道执事官在纸条上做了手脚,怀恨在心,伺机报复。一日,又拿了一张纸条,要执事官一笔将正反两面涂黑,否则就要将其拘役。执事官不慌不忙地把纸条扭了一下,粘住两端,提笔在纸环上一划,又拆开两端,只见纸条正反面均涂上黑色。县官的毒计又落空了。
现实可能根本不会发生这样的故事,但是这两个故事却很好地反映出“莫比乌斯带”的特点。“莫比乌斯带”在生活和生产中已经有了一些用途。例如,用皮带传送的动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带就不会只磨损一面了。如果把录音机的磁带做成“莫比乌斯带”状,就不存在正反两面的问题了,磁带就只有一个面了。
莫比乌斯带是一种拓扑图形,什么是拓扑呢?拓扑所研究的是几何图形的一些性质,它们在图形被弯曲、拉大、缩小或任意的变形下保持不变,只要在变形过程中不使原来不同的点重合为同一个点,又不产生新点。换句话说,这种变换的条件是:在原来图形的点与变换了图形的点之间存在着一一对应的关系,并且邻近的点还是邻近的点。这样的变换叫做拓扑变换。拓扑有一个形象说法——橡皮几何学。因为如果图形都是用橡皮做成的,就能把许多图形进行拓扑变换。例如一个橡皮圈能变形成一个圆圈或一个方圈。但是一个橡皮圈不能由拓扑变换成为一个阿拉伯数字8.因为不把圈上的两个点重合在一起,圈就不会变成,“莫比乌斯带”正好满足了上述要求。