八年级上3.2不等式的基本性质
我们作为学生,应该为即将到来的考试做出什么样的准备呢?下面是小编整理的浙教版八年级上3.2不等式的基本性质以供大家阅读。
浙教版八年级上3.2不等式的基本性质
选择题
已知a>b,c≠0,那么下列结论一定正确的是( )
A.ac2<bc2
B.ac<bc
C.ac>bc
D.ac2>bc2
甲(),乙(●),丙(■)表示的是三种不同的物体,现用天平称了两次,如图所示,那么这三种物体按质量从大到小的顺序应是( )
A.甲 乙 丙
B.乙 甲 丙
C.甲 丙 乙
D.丙 乙 甲
若a>b,则下列式子正确的是( )
A.﹣4a>﹣4b
B.a<b
C.a﹣4>b﹣4
D.4﹣a>4﹣b
若实数abc满足a2+b2+c2=9,代数式(a﹣b)2+(b﹣c)2+(c﹣a)2的最大值是( )
A.27
B.18
C.15
D.12
的值在( )
A.1和2之间
B.2和3之间
C.3和4之间
D.4和5之间
若a>b,c是不为零的有理数,则( )
A.ab>bc
B.ac2>bc2
C.ac<bc
D.ac2≥bc2
若a﹣b<0,则下列不等式一定成立的是( )
A.﹣a>﹣b
B.a+5>b+5
C.﹣b>﹣a
D.﹣b<a
若a>b,则下列不等式一定成立的是( )
A.a+2<b+5
B.a﹣3<b﹣3
C.1﹣a<1﹣b
D.a﹣b<0
当mx
A.m=0
B.m≠0
C.m>0
D.m<0
对于实数a,b,现有四个命题:①若a>b,则a2>b2;②若a>b,则a﹣b>0;③若a>|b|,则a2>b2;④若ab2;其中,真命题的个数是( )
A.1个
B.2个
C.3个
D.4个
如果m>n,那么下列不等式中成立的是( )
A.m+1<n+1
B.3m<3n
C.﹣m>﹣n
D.1﹣m<1﹣n.
若a>b,c<0,则下列四个不等式中成立的是( )
A.ac>bc
B.
C.a﹣c<b﹣c
D.a+c<b+c
下列四个结论中,正确的是( )
A.﹣2<﹣<﹣3
B.﹣<﹣3<﹣2
C.﹣3<﹣2<﹣
D.﹣3<﹣<﹣2
填空题
若a>b,a<0,则﹣(a+b)>﹣b>﹣a>﹣a+b .
比较下列实数的大小(在空格填上>、<或=)①;②
.
若a>b,用“>”“<”填空.
(1)a+4 b+4;(2)2a 2b;(3)﹣2﹣a ﹣2﹣b;
若a”或“<”号)
6﹣的整数部分是 . 若a>1,则a2,,a按从小到大排列为 .
若a”“<”或“=”).
不等式(a﹣b)x1,则a、b的大小关系是:a b.
若a>b,用“<”号或“>”号填空:﹣2a ﹣2b.
已知a”、“<”或“=”号).
已知:a>b,则a+3 b+3,2a 2b,﹣4a ﹣4b.(填>或<号)
由m
.
解答题
阅读下面的文字,解答问题.
大家知道
是无理数,而无理数是无限不循环小数,因此
的小数部分我们不可能全部地写出来,但是由于1<
<2,所以
的整数部分为1,将
减去其整数部分1,差就是小数部分
﹣1,根据以上的内容,解答下面的问题: (1)
的整数部分是 ,小数部分是 ; (2)1+
的整数部分是 ,小数部分是 ; (3)若设2+
整数部分是x,小数部分是y,求x﹣
y的值.
判断下列命题的真假,并说明理由.
(1)两个无理数的和仍然是无理数.
(2)如果a>b,那么1﹣2a<1﹣2b.
判断以下各题的结论是否正确(对的打“√”,错的打“×”).
(1)若 b﹣3a<0,则b<3a;
(2)如果﹣5x>20,那么x>﹣4;
(3)若a>b,则 ac2>bc2;
(4)若ac2>bc2,则a>b;
(5)若a>b,则 a(c2+1)>b(c2+1).
(6)若a>b>0,则
<
. .
利用不等式性质求不等式解集,并把解集在数轴上表示.
(1)3x﹣1>4
(2)3x<5x﹣4
(3)
x+2≤1 (4)1﹣
x≤3.
根据不等式的性质把下列不等式化成x>a或x
(1)x+7>9
(2)6x<5x﹣3
(3)