八年级华师大上册第十一章数学教案

2017-05-18

不同版本的数学课本,编辑的目录,教学内容以及知识点的难度都不同,那华师大版本的数学教案会是怎样的?下面是小编整理的八年级华师大上册第十一章数学教案,希望对您有用。

八年级华师大上册第十一章数学教案第一节:平方根与立方根(1)

【教学目标】:以实际问题的需要出发,引出平方根的概念,理解平方根的意义,会求某些数的平方根。

【教学重、难点】:重点:了解平方根的概念,求某些非负数的平方根。

难点:平方根的意义

【教具应用】:老师:三角板、小黑板

学生:

【教学过程】:

一、 提出问题,创设情境。

问题1、要剪出一块面积为25cm²的正方形纸片,纸片的边长应是多少?

问题2、已知圆的面积是16πcm²,求圆的半径长。

要想解决这些问题,就来学习本节内容

二、 自学提纲:

1、 你能解决上面两个问题吗?这两个问题的实质是什么?

2、 看第2页,知道什么是一个数的平方根吗?

3、 25的平方根只有5吗?为什么?

4、 会求110的平方根吗?试一试

5、 -4有平方根吗?为什么?

6、 想一想,你是用什么运算来检验或寻找一个数的平方根?

7、 根据平方根的定义你能指出正数、0、负数的平方根的特征吗?

8、 什么叫开平方?

三、 能力、知识、提高

同学们展示自学结果,老师点拔

① 情境中的两个问题的实质是已知某数的平方,要求这个数。

② 概括:如果一个数的平方等于a,那么这个数叫做a的平方根。

如5²=25,(-5)²=25 ∴25的平方根有两个:5和-5

③ 根据平方根的意义,可以利用平方来检验或寻找一个数的平方根。

④ 任何数的平方都不等于-4,所以-4没有平方根。

⑤ 0的平方等于0。所以0只有一个平方根为0。

⑥ 概括:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。 ⑦ 求一个数a(a≥0)的平方根的运算,叫做开平方。

四、 知识应用

1、 求下列各数的平方根

① 49 ②1.69 ③

2、 将下列各数开平方

①1 ②0.09 ③(-

五、 测评

1、 说出下列各数的平方根

①81 ②0.25 ③

2、 求未知数x的值

①(3x)²=16 ②(2x -1)²=9

六、 小结: 16 81 ④(-0.2)² 3)² 54 125

1、 什么叫做平方根?

2、 一个正数的平方根有几个?零的平根有几个?负数的平方根呢?

3、 平方和开平方运算有什么区别和联系?

区别:①平方运算中,已知的是底数和指数,求的是幂。而在开平方运算中,已知的是指数和幂,求的是底。

②平方运算中的底数可以是任意数,平方的结果是唯一的,在开平方运算中,开方的数的结果不一定是唯一的。

联系:二者互为逆运算。

七、 布置作业

1、 P7第1题

2、 (选做)已知:x是49的平方根,y是1的平方根,求:

①2x+1 ②(x+y)²

八年级华师大上册第十一章数学教案第二节:平方根与立方根(2)

【教学目标】:1、引导学生建立清晰的概念系统,在学生正确理解平方根概念的意义和平方根的表示方法基础上,讨论算术平方根的概念及其表示方法。

2、会用计算器求一个非负数的算术平方根

【教学重、难点】:重点:了解数的算术平方根的概念,会用“

难点:对”表示一个数的平方根和算术平方根。 a的理解。特别是a的取值的理解。

【教具应用】:教师:计算器、小黑板

学生:计算器

【教学过程】:

一、 提出问题,创设情境

1、 在(-5)²,-5²,5²中,哪个有平方根?平方根是多少?哪个没有平方根?为什么?

2、 说出平方根的概念和性质。

3、 0.49的平方根怎样用符号表示呢?又有新的命名吗?带着这些问题,走进我们今天的课堂。

二、 自学提纲

1、9的平方根是 ,9的正的平方根是 ,9=3表示的意义是什么?

2、什么样的数存在平方根?什么样的平方根是这个数的算术平方根?分别用什么符号表示?

3、-a”存在的条件是什么? “a”的结果是正数、0、还是负数? 0=0正确吗? a2有意义吗?(a)2呢?a呢? 的意义是什么?它等于什么

三 、 能力、知识、提高

同学们展示自学结果,教师点拔

1、概括:正数a的正的平方根叫做a的算术平方根,记为

即-a,读作“a的算术平方根”。另一个平方根是它的相反数,a。因此正数a的平方根可以记作±a,a称为被开方数。 注意:①这里的

②这里“a不仅表示开平方运算,而且表示正值的平方根。 a”中有双“正”字,即被开方数为正,结果的值为正。

2、0的平方根也叫0的算术平方根,因此0的算术平方根是0。即

a的算术平方根,其结果为非负数。

3、=0。从以上可知:当a是正数或0时,a表示a2总有意义,(a)2也总有意义,但a存在有条件限制,即-a≥0,∴a≤0

四、知识应用

1、求110的算术平方根

2、求下列各数的平方根和算术平方根

①36 ②2.89 ③

3、求下列各式的值 ①79 ②±4223 36

4、 用计算器求下列各数的算术平方根(看第4页的按键顺序)

①529 ②1125 ③44.81

五、测评问题

1、下列各式中叫些有意义?哪些无意义? -0.3 0.3 (0.3)2 (0.3)2

1

256 2、求下列各数的平方根和算术平方根 111 0.25 400

3、求下列各式的值,并说明它们各表示的意义 - ± 0

5、 用计算器计算 ①

六、小结

①如何表示一个正数的平方根?举例说明

②什么叫做算术平方根? ③式子

七、布置作业

1、P7 3(1) 4

2、(选做)若某数的平方根为2a+3和a-15,求这个数。

3、若 ②27.8784 ③4.225(精确到0.01) x1中的x应满足什么条件? x3+y4=0,求(x-y)2007

更多相关阅读

最新发布的文章