6年级数学复习资料
小编为大家收集整理了六年级数学学习复习资料,供大家借鉴参考,希望对你有帮助!
6年级数学复习资料1
(一)整数和小数
1、整数和自然数
像…,-3,-2,-1,0,1,2,3,…这样的数统称为(整数)。整数的个数是(无限)的。
数物体的时候,用来表示物体个数的0,1,2,3„叫做(自然数)。
自然数整数的(一部分)。(“1”)是自然数的单位。最小的自然数是( 0 )。
2、小数 小数表示的就是十分之几,百分之几,千分之几„„的数,一位小数可表示为十分之几的数,两位小数可表示为百分之几的数,三位小数可表示为千分之几的数 „„
小数点右边第一位是(十分位),计数单位是(十分之一);第二位是(百分位),计数单位是(百分之一)„„ 小数部分有几个数位,就叫做几位小数。 如3.305是( 三 )位小数
3、整数、小数的读法和写法: 读整数时注意先分级再读数。 28302006000 读作: 读小数时注意小数部分顺次读出每个数位上的数。 27.036 读作: 写数时注意写好后,一定要读一读仔细校对。 五亿零8千 写作: 三百八十点零三六 为了读写方便,常常把较大的数改写成用“万”或“亿”作单位的数。
如只要求“改写”,结果应是准确数。 768000000 =( )亿 如要求“省略”万(亿)后面的尾数,结果应是近似数。 768000000≈( )亿
45、小数点向右(左)移动一位、两位、三位„„原来的数就扩大(缩小)10倍、100倍、1000倍„„
6、正数、负数
负数<0<正数 两个负数比较,负号后面的数越大这个数反而越小。 -6.8<-0.4 -2>-10
(二)因数和倍数
1、因数和倍数
一个数的最小因数是1,最大的因数是它本身。一个数的因数的个数是有限的。 一个数的最小倍数是它本身,没有最大倍数。一个数的倍数的个数是无限的。
为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)
2、奇数、偶数
自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
最小的偶数是( 0 )最小的奇数是( 1 ) 在全部自然数中,不是奇数就是偶数。
奇数±偶数=(奇数) 奇数±奇数=(偶数) 偶数±偶数=(偶数)
奇数×偶数=(偶数) 奇数×奇数=(奇数) 偶数×偶数=(偶数)
3、2,3,5的倍数特征:
个位上是0,2,4,6,8的数都是2的倍数。 例如: 70 32 14 56 158 个位上是0或5的数,是5的倍数。 例如: 70 655
一个数各位上的数的和是3的倍数,这个数就是3的倍数。 例如: 45 876
4、质数、合数
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)
一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
( 1 )不是质数也不是合数,最小的质数是( 2 ),最小的合数是( 4 )
10073、79、83、89、97 。
5、公因数、最大公因数
几个数公有的因数,叫做这几个数的(公因数);其中最大的一个叫做这几个数的(最大公因数)。 几个数公有的倍数,叫做这几个数的(公倍数);其中最小的一个叫做这几个数的(最小公倍数)。 公因数只有1的两个数叫做(互质数)。
互质数的几种情况:⑴、两个数中大数是质数,这两个数一定互质。(如5和13,6和13)
⑵、相邻的两个数一定互质。(如8和9)
⑶、1和任何数都互质。(如1和8)
(4)、两个都是合数或一个质数一个合数。(如4和25 11和15) 如两个数是倍数关系,那么较小数就是这两个数的最大公因数;较大数就是这两个数的最小公倍数。 如果两个数是互质关系,它们的最大公因数就是1;最小公倍数就是它们的积。
(三)分数和百分数
1) 在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。 一个物体、一些物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2) 一个整体可以用自然数1来表示,通常把它叫做单位“1”。
213) 3 a a 3 被除数a 4) a÷b= 除 数 b ushua
5) 分子比分母小的分数叫真分数。真分数小于1。 分子比分母大或分子和分母相等的分数叫做假分数。假分数大于1或等于1。
2 3像,这样的数叫做带分数。 a 3 4
6) 分数的基本性质:分数的分子和分母同时乘或者除以相同的数(0除外),分数大小不变。
7)表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或者百分比。
百分数通常不写成分数形式,而采用百分号“%”,百分数后面不能带单位名称。
“几成”就是十分之几,也就是百分之几十。 如:五成表示( )%
“折扣”表示某种商品降价的幅度。 如:75折就表示现价是原价( )%
8)大小比较:当小数、分数、百分数混合比较大小时,一般先把各类统一成小数进行比较。
(四)四则运算:
1)运算顺序:加减乘除混合的算式要(先乘除后加减);只有加减法或只有乘除法就要(从左到右)。
2)运算定律:
加法交换率:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 乘法交换率:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配率:(a+b)×c=a×c+b×c 减法运算性质:a―b―c = a―(b+c) 除法运算性质:a÷b÷c = a÷( b×c )【去括号】
15.43-(2.6+5.43)【商不变性质】
3
20÷0.25
(五)比和比例
1、意义和性质 比:两个数相除又叫做两个数的比。 比的前项和后项同时乘或除以相同的数(0除外),比值不变。 比例:表示两个比相等的式子叫做比例。 在比例里,两个内项的积等于两个外项的积。
2、比例尺:一幅图的图上距离和实际距离的比叫做比例尺。
3、正反比例:
正比例:两种相关联的量中,相对应的两个数的(比值)一定。 y
x=k(一定)
反比例:两种相关联的量中,相对应的两个数的(积)一定。 x×y=k(一定)
1)熟记以下关系式以便于判断:
速度×时间=路程 工作效率×工作时间=工作总量 单价×数量=总价 出勤人数÷总人数=出勤率 出油(粉、米)质量÷大豆(总)质量=出油(粉、米)率 每天读的页数×读的天数=总页数
2)熟记以下两种量的关系:
同时同地的竿高和影长成( 正 )比例。 同时同地的竿高和影长的比值一定。
正方形的边长和周长成( 正 )比例。 正方形的周长÷边长 = 4 (一定)
正方形的面积和边长( 不成 )比例。 正方形的面积÷边长 = 边长
长方形的周长一定,长和宽( 不成 )比例。 (长+宽)× 2 = 面积
长方形的面积一定,长和宽成( 反)比例。 长×宽=面积(一定)
圆的面积和半径( 不成 )比例 。 圆的面积 ÷ 半径的平方 = ∏
圆柱体积一定,底面积和高成( 反 )比例。 圆柱底面积×高 = 体积(一定)
圆锥体积一定,底面积和高成( 反 )比例。 圆锥底面积×高÷3=体积(一定)
(六)常见的量
1、熟记数学书第120页内容,特别要记得每种量中一些特殊的进率。
2、面积、体积、容积、重量
(指甲面) 1dm (手掌) 1m (半扇门面) 1公顷(两个操场) 3 (色子) 1dm3(粉笔盒) 1m3 (讲台桌)
(口服液) 1L(一听八宝粥)
克(一分硬币) 1千克(一包味精) 1吨(一只小象)
3、单位换算:(特别要注意时间单位之间的转化)
乘进率
高级单位的数 低级单位的数
除以进率
例:4.8平方千米=( )公顷 过程:100×4.8 78分=( )小时 过程:78÷60=1.3
(七)数学思考
1、找规律:书上p91例5
点就会增加几条线段。
列出算式找规律:
如:8个点连成线段的条数:1+2+3+4+5+6+7=
2、多边形内角和:书上p94第3题
方法:把多边形分成若干个三角形再求若干个三角形内角的总和。
多边形内角和与它们边数的关系是: o×(边数-2)= 多边形内角和
9边形的内角和是:180 ×(9-2)= 1260
3、排列组合:理解书上p92例6 p94—4 p95—5
4、推理:理解书上p93例7 p96—6、7
6年级数学复习资料2
(八)空间与图形
1. 特别提醒:圆柱的侧面积是:底面周长×高 圆柱的体积是:底面积×高
2、三角形:
分类: 按角分类:锐角三角形、直角三角形、钝角三角形
按边分类:一般三角形、等腰三角形、等边三角形
三角形内角和是( 180 )度。
一般三角形特点:顶角是60o等腰三角形一定是( 等边 )三角形。三角形中最小的角是46o,这一定是( 锐角 )三角形。有两个角是45的角一定是( 直角 )三角形。
3、长方形:把一个长方形拉成平行四边形,周长( 不变 ),面积( 变小 )。
不变 ),面积( 变大 )。
不变 ),周长( 变小 )。
4、圆:圆的半径扩大2倍,它的周长扩大( 2 )倍,面积扩大( 4 )倍。
任何圆的周长是直径的(π)倍。
5、长方体:【长度是原来的倍数】、【体积是立方倍】
o长方体的长、宽、高(或正方体的棱长)都变为原来的2(3)倍,那么它的总棱长也扩大2(3)倍,【面积是平方倍】
圆柱的体积是与它等底等高的圆锥的( 3倍 )。把一个圆柱形木块削成一个最大的圆锥,把圆锥体积看成(1份),可把削去部分的体积看成(2份),圆柱的体积就有这样的(3份)。
7、一个物体完全浸没在水中,这个物体的体积就水面上升那部分水的体积。
(九)图形和变换:
1 2、平移:平移后图形完全相同,大小方向都不变。 作图要求:先找对应点再连线。
3、旋转:注意按顺时针还是逆时针旋转,旋转后图形的大小形状形同,只是方向变了。
作图提示:遇到稍难的题可先把原图画在练习纸上,用笔顶住“o”点按要求转动,再照样画。
4、放大缩小:如按2:1放大,各边都要放大到原来的2倍。 (十)统计和可能性
1、统计图分类:条形统计图-------能直观地看出各种数量的多少
折线统计图-------不但可以表示出数量的多少,而且能清楚地表示出数量增减变化情况。
扇形统计图-------可以清楚地表示出各部分数量同总数之间的关系。
2、可能性:
可能性是一个数与另一个数的比,任何事件发生的可能性大小一般在0-100%之间。
(十一)综合应用
1、一般实际问题:
熟记常用的数量关系:单价×数量=总价
速度×时间=路程
工作效率×工作时间=工作总量
单位产量×总面积=总产量
2、典型实际问题:
(1)求平均数:总数量÷总分数=平均数
(2)先求一份是多少的问题 (总数÷份数= 一份数) (3)先求总数,再求每份是多少,或有这样的几份
(4)相遇问题 (路程÷速度和=相遇时间)
例:两地相距275千米,客车与货车分别从两地同时相对开出,客车每小时行60千米,火车每小时行50千米,开出几小时后两车相遇?
275÷(60+50)= 2.5(小时)
3、分数、百分数问题
(1)求A是B的几分之几(或百分之几)
方法:确定谁是单位“1” B是单位“1” A÷B
(2)求A比B多(少、增加、减少、提高、降低)百分之几?
方法:(多、少、增加、减少、提高、降低)的量÷单位“1”
例:现在买一台收音机用160元,比过去少用85元,收音机售价降低了百分之几 ?
想:求降低百分之几就是求降低的价钱占原价的百分之几,即降低的价钱÷原价
85÷(160+85)
(3)求A的几分之几(或百分之几)是多少?
方法:单位“1”的量×分率(百分率)=分率对应量
例1:一堆450吨的货物,第一天运了总数的
450×(292916,第二天运了总数的。两天共运货物多少吨? +1
6)
例2:一个书包原价50元,现价比原价降低10%,现价多少元?
50×(1-10%)
(4)已知A的几分之几(或百分之几)是多少,求A
方法:对应量÷对应分率=单位“1”的量
例1:一袋面粉,2天吃了
例2:一袋面粉,2天吃了252
5,正好吃了16千克,这袋面粉多少千克? 16÷,还剩下6千克,这袋面粉多少千克? 6÷(1-252
5= )=
例3: 小明家二月份用水20吨,二月份比一月份节约20%,一月份用水多少吨? 20÷(1-20%) 例4:六(1)班开展活动,全班14的同学布置教室,的同学采购物品,其余14人准备节目,六(1)5
142班全班有多少人? 想:求全班人数就是求单位“1”的量,14人对应的是全班的
14÷(1-14和25以外的人 -2
5)
(5)生活实际问题