小学生五年级数学手抄报

2016-12-02

数学是无穷的科学,是开启科技大门的钥匙。在我们的日常生活中,我们离不开数学,数学与生活密不可分。下面是小编为大家带来的小学生五年级数学手抄报,希望大家喜欢。

小学生五年级数学手抄报1:熊庆来的故事

熊庆来(1893-1969)是云南弥勒县人,中国现代数学的先驱,为中国数学事业的发展做出了杰出贡献。

熊庆来的父亲熊国栋,精通儒学,但更喜欢新学,思想很开明,对熊庆来的影响很大。少年时的熊庆来从他父亲那里常听到有关孙中山民主革命的事情,这在幼年熊庆来的心田播下了爱国的种子。

1907年,熊庆来考入昆明的云南方言学堂,不久又升入云南高等学堂。当时满清王朝已日薄西山,各地的反清斗争风起云涌,抗捐、抗税、罢课、罢市、兵变遍及全国,清政府陷入于风雨飘摇之中。熊庆来由于参加了“收回矿山开采权”的抗法反清的示威游行而遭到学校的记过处分。现实的生活与斗争命命名熊庆来认识到:要使国家富强,必须掌握科学,科学能强国富民。

1913年,熊庆来赴欧留学。1914年,第一次世界大战爆发,他从比利时经荷兰、英国,辗转到了法国巴黎。8年间先后获得高等数学、力学及天文学等多科证书,并获得理学硕士学位。1921年,28岁的熊庆来学成归国,一心想学以致用,救民于水火。1949年6月,国民党反动政府趁熊庆来去巴黎参加国际会议的机会,解散了熊庆来苦心经营12年的云南大学。年近花甲的熊庆来怀着“壮志难酬,报国无门”的心情,决定滞留在法国继续从事函数论的研究。

“……祖国欢迎你,人民欢迎你!欢迎你回来参加社会主义建设的伟大事业……”1957年4月,周总理给熊庆来写信,动员他回国。同年6月,熊庆来在完成了函数论专著稿后,毅然启程,回到了祖国的怀抱。他表示,愿在社会主义的光芒中鞠躬尽瘁于祖国的学术建设事业。在回国后的7年中,他在国内外学术杂志上发表了近20篇具有世界水平的数学论文。还培养了杨乐、张广厚等一批数学人才,为祖国赢得了荣誉,表现了这位七旬老人热爱祖国的赤子之心。

1969年,一代宗师、著名数学家熊庆来先生与世长辞。临终之前他还表示为人民鞠躬尽瘁,死而后已。

小学生五年级数学手抄报图一

小学生五年级数学手抄报图二

小学生五年级数学手抄报图三

小学生五年级数学手抄报2:趣味数学

在下面这个加法算式中,每个字母代表0~9的一个数字,而且不同的字母代表不同的数字。

AB

CD

EF

+GH

————

III

请问缺了0~9中的哪一个数字?

(提示:I必定代表哪个数字?)

答案:

由于每一列都是四个不同的数字相加,所以一列数字加起来得到的

和最大为9+8+7+6,即30。由于I不能等于0,所以右列向左列的进位不能大于2。由于向左列的进位不能大于2,所以I(作为和的首位数)不能等于3。于是I必定等于1或2。

如果I等于1,则右列数字之和必定是11或21,而左列数字之和相应为10或9。于是,

(B+D+F+H)+(A+C+E+G)+I=10+10+1=22,

或者

(B+D+F+H)+(A+C+E+G)+I=21+9+1=31。

但是,从1到9到这十个数字之和是45,而这十个数字之和与上述两个式子中九个数字之和的差都大于9。这种情况是不可能的。因此I必定等于2。

既然I等于2,那么右列数字之和必定是12或22,而左列数字之和相应为21或20。于是,

(B+D+F+H)+(A+C+E+G)+I=12+21+2=35,

或者

(B+D+F+H)+(A+C+E+G)+I=22+20+2=45。

这里第一种选择不成立,因为那十个数字之和与式子中九个数字之和的差大于9。因此缺失的数字必定是1。

至少存在一种这样的加法式子,这可以证明如下:按惯例,两位数的首位数字不能是0,所以0只能出现于右列。于是右列其他三个数字之和为22。这样,右列的四个数字只有两种可能:0、5、8、9(左列数字相应为3、4、6、7),或0、6、7、9(左列数字相应为3、4、5、8)。显然,这样的加法式子有很多。

以上是小编给大家整理的小学生五年级数学手抄报,欢迎大家阅读收藏。

更多相关阅读

最新发布的文章