数学系概率论数理统计毕业论文
相关话题
概率论与数理统计是所有高等院校的理工、经济管理、金融类专业本科阶段开设的一门必修数学课程。下文是小编为大家整理的关于数学系概率论数理统计毕业论文的范文,欢迎大家阅读参考!
数学系概率论数理统计毕业论文篇1
概率论与数理统计教学浅谈
摘 要:随着本科院校近年来不断扩大招生规模,在一定程度上影响了生源质量。与此同时,普通高等院校在精简课程方面也做了较大调整。在此新形势下,作为一名的教师,针对普通高等院校概率论与数理统计课程的教学改革提出相关见解,认为目前普通高等院校,尤其是一些偏应用型的工科院校,在概率论与数理统计课程的教学中,不应该死守教师满堂讲解的教学模式,而是应该提供给学生应用的机会,设立教学实验课;教学中应突出实际应用,与数学建模相揉合,以达到更好的教学以及学习效果。
关键词:概率论与数理统计 教学实验 SAS软件 揉合 数学建模 概率论与数理统计是工科院校的重要课程,但是由于课程自身的特点决定了学生在学习过程中常常会感觉概念太抽象,理解起来相当费劲。如果不能很好地理解概念,那么后续学习就很可能会出现一系列的问题。大多数的时候,在处理习题以及在考试中就会出现很多不必要的错误,根源在于没有很好地理解概念,思维没有得到相应地拓展。教师在整个教学环节,包括课前备课中必须要思考的,包括如何安排教学,使得学生在学习过程中,能够愿意学习这门课程,能够接受该课程的理论体系。通过近十年来对概率论与数理统计课程的教学,笔者认为可以从以下几个方面来把握。
1 建立良好开端
概率论与数理统计作为一门数学学科,会让大多数学生在心理上产生莫名的抵触。在以前的教学过程中,遇到过一些学生,自己认为数学就是很难,很难,太抽象,从开始上课就觉得自己肯定学不好。很显然,这并不是一个好预兆。我们都知道,兴趣是最好的老师。一件事情难或者易,都是和做这件事情的人的主观意愿有很大关系。如果愿意去做,有兴趣,那么难题会变得简单。同样,如果不愿意去做,迫于外界压力不得不去做,即使是很简单的问题,也不见得就会得到圆满的解决。所以,作为任课教师,第一次课的首要任务不是开篇就开始教学内容,而是应该建立一个良好的开端,给学生一定的信息量,让学生觉得这门课程不错,挺有意思。那该怎么样上好第一次课。
任何一门学科都有经典的极具代表性的小典故。这些小典故,就像一盏盏小灯光,指引人们有足够的兴趣去探索更加光辉的世界。那概率论与数理统计的这个小灯光又在哪里呢?数学就是为解决实际问题而生的,自然也来源于生活,就像概率论与数理统计学科的诞生一样。简单来说,概率的起源――都是色子惹的“祸”。三四百年前的欧洲国家,贵族盛行赌博之风。利用色子赌博的方式可谓是五花八门。很自然,赌徒都希望自己在赌博中不输。由此产生了著名的德・梅尔问题。但是这些赌徒解决不了这些问题,重担最终落在数学家的身上。在帕斯卡、费尔马、惠更斯等数学巨匠的努力下,创立了早期的概率论。
此外,我们所熟知的圆周率,是精确计算圆周长、圆面积、球体积等的关键值。作为这个充满神奇的常用数,在现代计算机的飞速发展下,可以计算到小数点以后10万亿位。我们没有必要去深究那10万亿个数到底怎么来的,但是有一点应该确信,事物发展是从易到难的。我们也可以用我们所学概率论与数理统计的知识粗略算出其值。这是一种随机试验方法――蒙特卡洛方法。原理是:在直角坐标系下,有一个圆心在原点的单位圆,在第一象限内有一个正方形,其边长为1,且两直角边落在两坐标轴上。向此边长为1的正方形内随机投入块小石头,当足够大时,小石头会均匀分布在正方形中,落在1/4圆内的小石头个数记为,则可近似看成1/4单位圆面积。记投点坐标为,每个坐标是(0,1)内的随机数。每个落在1/4圆内即满足的概率为。
于是,可用随机投点法近似计算:。这样就可以计算出圆周率。如果想进一步得到精确值,可以加大随机投点的个数,只要其个数足够大,就可以得到更为精确的值。
通过此番介绍,可以很大程度上吸引学生愿意了解这门学科。这样就可以在一定程度上打消学生的畏难情绪,建立良好的开端。
2 开设教学实验
传统的数学教育属于知识传授型,较为重视课程的系统性、独立性,人为地割裂了数学理论和数学方法与现实世界的联系。对于概率论与数理统计的教学,可以适当增加一些多媒体课件的应用。数学课程的抽象性,导致很多教师认为不能用多媒体课件教学,因为学生跟不上教师的思维,而一味地看课件,不能很好地领会课程内容。凡事总有利弊。我个人认为,如果可以适当地应用多媒体课件,会在一定程度上帮助学生理解教学内容,而不是低头看一些复杂的定义、定理。作为理论性偏强的内容,教师可以自行调整,没有必要花费大量的时间板书此部分内容。教材上有的,直接可以放到多媒体课件里,重点是讲解含义以及应用。过多的板书定义、定理,也会影响到学生学习的信心和兴趣。在当前教学形势下,如果不借助计算机这一现代化的工具,将使得学生不了解,也不会使用数学软件,同时加重学生学习以及教师教学的负担。
除了课堂上恰当使用多媒体课件意外,还可以在完成课堂的理论教学以后,适当安排一定的学时给学生,让学生亲身体会一下,在借助现代化的计算机技术情况下,我们的概率论与数理统计课程可以如此不同。比如说:利用SAS软件计算正态分布、二项分布、指数分布等事件的概率。对于各种分布通过改变参数绘制图形,体现分布中参数的意义。通过实验,使学生更好地理解定义、定理。这样做,在现有学时紧张的情况下,不仅可以提高教学效果,更可以使学生的计算和应用能力得到提高。
3 揉合数学建模
数学学习贵在学以致用。在当前的教育背景下,对于数学这门学科的学习,从小学开始就仅仅体现在会做题,能考高分上。这当然可以作为对于知识学习的一个考量,但绝对不应该成为唯一的考量。纵然具有扎实的理论知识,若不知道、不能够在实际工作或是生活中解决问题,那就失去了学习知识的初衷。
在校大学生,都能走出校园,去到工厂、企业中帮助解决实际问题,事实上也不现实。我们需要做的是在学校既有的条件下,提供给学生更多更好地实战的机会,学以致用。我认为最好的办法就是鼓励学生参加全国大学生数学建模竞赛。作为一个全国性的赛事,很具有挑战性。参加过本赛事的同学,大多都认同此赛事对于他们把所学知识用于解决实际问题是一个很好的平台,对他们的综合能力有很大的提高。
纵观今年全国大学生数学建模竞赛的题目,很多时候都会牵涉到概率论与统计的内容。如:2010年储油罐的变位识别与罐容量标定问题,2011年交警巡逻服务台的设置和调度问题,2012年葡萄酒的评价,2013年车道被占用对城市道路通行能力的影响等问题都在一定程度上涉及到了概率论与数理统计的知识。因此,教师在课堂教学中对利用课程知识进行数学建模的思想加以渗透,探索一些具有现实意义、应用性强的实例,让学生分析、调查、研究,在探索过程中体会随机问题的魅力,培养学生运用概率论与数理统计知识分析和解决问题的能力。
当然,要参加全国大学生数学建模竞赛,必须具备一定的基础。基础从哪里来?在平时,在教师上课的时候加以灌输建模思想。有限的课时,显然不适合作诸如全国大学生数学建模竞赛那样复杂的题目,可以从小处入手,从生活中截取部分实例,帮助培养学生数学建模的思维方式。
实例:卖报人的烦恼。
问题简述:卖报人每天早晨购进报纸零售,晚上将没有卖掉的报纸退回,如何购进适量的报纸,使之即可以满足需求量,同时又可以最大程度地减少因为退回带来的损失?
问题分析:其实这就是一个关于怎么样使得获得利益最大化的问题,作为每一个生意人,都会遇到类似的问题。那么,看似简单的一个小问题,和概率论与数理统计知识又有什么关系呢?因为要考虑获得最大收益,显然与购进量和售出量有关系。而购进量是受需求量的影响,而需求又是随机的,故而要建立一个随机模型,也就是概率模型,是一类针对随机现象的模型。
问题解决:设报纸每份购进价为,零售价为,退回价为,显然有,因而每卖出一份报纸赚,退回一份赔,为了获得最大的收入,必须确定合适的购进量。假定卖报人按照自己以往的售卖经验已经基本掌握了需求量的随机规律,也即是每天报纸的需求量为的概率为是知道的。假如每天购进量为份,由于需求量随机,所以卖报人的收入也是随机的,因此应该以每天收入的数学期望为优化的目标函数。
利用概率知识,可以分析得到:购进量应满足:卖不完与卖完的概率之比恰好等于卖出一份赚的钱和退回一份赔的钱之比。显然,当卖报人与报社签订合同使卖报人每份赚钱与赔钱之比越大时,卖报人购进的量就应该越多。
利用概率论知识使问题得到了很好解决,所得到的结论和实际也是相符合的。
日常生活中经常会遇到排队等候服务的现象,如车站售票处乘客依次排队买票,医院里病人按序号等候就医,超市里收银台前顾客排队等候付款,空中飞机等候跑道降落等等。诸如此类问题,可归结为同一个随机问题:顾客到达的时刻和服务员进行服务的时间都是随机的,可用随机服务模型解决这一问题。
4 完善考核方式
考核是教学过程的重要环节,是考查学生学习情况,评估教学质量的手段。概率论与数理统计课程作为考试课程,不能一味采用期末闭卷卷面成绩占总评的80%,平时成绩占总评的20%的考查机制。总评成绩应该更加细化,可分为:平时成绩占60%,期末闭卷卷面成绩占40%,其中平时成绩的60%可划分为出勤占10%,课堂表现占15%,课后作业占10%,数学建模占25%。这样既可调动学生积极性,又能体现学生对概率论与数理统计知识的应用能力。只有在这样的考核机制下,才更有利于学生实际应用能力的培养。
总之,在概率论与数理统计的教学中,不是仅仅是让学生会做几道概率论与数理统计的题目,而是要想办法引导学生在学习概率论与数理统计课程的过程中拓展学生思维,深刻体会其实际应用价值,逐步提高分析、解决问题的能力。通过教师的潜心培养,学生所具备的综合素质必将在学生后续的学习、工作以及以后的生活中发挥至关重要的作用。
参考文献
[1] 姜启源.数学模型[M].北京:高等教育出版社,1993.
[2] 肖鹏,杜燕飞.概率论与数理统计教学改革的几点思考[J].数学教学研究,2009,28(1):60-61.
[3] 侯丹.数学建模思想融入概率论与数理统计的研究[J].高师理科学刊,2013,33(3):66-69.
[4] 国忠金,尹逊汝,李淑珍.数学建模思想在概率论与数理统计课程教学中的渗透与应用[J].泰山学院学报,2014,36(6):134-137.
[5] 姚君,苑延华.概率论与数理统计教学中数学建模思想的培养[J].高师理科学刊,2012,32(3):95-97.
[6] 单峰,朱丽梅,田贺民.数学模型[M].北京:国防工业出版社,2012.
[7] 司守奎,孙玺菁.数学建模算法与应用[M].北京:国防工业出版社,2011.
数学系概率论数理统计毕业论文篇2
概率论与数理统计教学的有效策略初探
【摘要】概率论与数理统计是理工科及经管类院校开设的一门重要的基础课,也是最能够反映将数学与实践相结合的课程.本文分析了目前该课程的教学现状,对本课程的教学方式进行了探讨,从调整教学内容,丰富教学形式,培养学生实际应用能力,健全考核制度等方面提出相应对策,提高教学质量并改善教学效果.
【关键词】概率论与数理统计﹔教学方法﹔学习兴趣﹔应用实践
引言
概率论与数理统计是高等院校理工及经管类等专业重要的基础数学课程,是研究日常生活中常见的随机现象及其统计规律性的一门学科,其内容丰富,理论方法抽象、独特,与其他学科也有着密切的关联.随着改革开放的深入和科学技术的飞速发展,概率统计的知识和方法被广泛地应用到工农业生产、军事、天文预报、金融、交通、医学等各个领域.这就表明了概率论与数理统计在当今社会中发挥了越来越重要的作用,对现代人才所需的专业知识、能力都提出了更高的要求.
根据概率与数理统计课程的教学实践,从教学结果中分析,笔者得出了目前教学中存在着以下几个方面的问题:教学内容多且难度大,理论知识的抽象、思维方法的独特难以掌握和理解,教学方式单一,教学中忽视了学生应用知识能力的培养等.因此,学生普遍感觉到概率统计课概念难理解,枯燥无味,方法难掌握,学习兴趣降低.这样就不能有效地激发学生的创造性思维,更不利于提高学生分析和解决实际应用问题的能力.作为教授这门课的教师,如何教好这门课,提高教学质量是值得思考和探究的,本文就结合笔者教学的经验,提出了一些行之有效的策略和措施,从以下几个方面入手.
一、调整教学内容,加强概念和基本定理的教学
当前概率统计课程普遍存在内容多且难度大的问题,为保持概率统计的完整性和系统性,在保留经典内容的前提下,针对不同专业的学生应适当地调整教材内容.例如,复杂定理及推导可以部分省略,但要强调能理解基本概念.因为概念是它的基石,定理、公式的推导和应用都是建立在基本概念基础上,概念、定理、一些具体的计算公式构成了整个概率论的知识体系.
在概率论的教学过程中还应当适时补充高等数学的相关知识.这是因为很多学生有些高等数学知识已经有所遗忘或者学习不够扎实,而概率统计课程中又要有所运用,所以教师也应该考虑补充这些基础知识.例如,连续性随机变量的知识点要用到定积分、变限积分、二重积分等知识.
如果学生对概念理解不透彻的话,要掌握好基本定理并灵活地运用就变得更为困难.为此,教师在教学中要重视基本概念的解析和补充,采取多种途径使学生牢固地理解基本概念,如为何要引入随机事件、随机变量、分布函数、统计量、抽样分布、参数的点估计等概念,引入之后在何处运用.不少学生对于概念的理解模糊,比如讲到随机事件的关系中的“相互独立”,很多学生都会把它和“互不相容”的概念联系在一起或者对这两个概念产生混淆.此时,教师应该用实际的例子说明“相互独立”与“互不相容”没有任何联系,会更好地帮助学生理解概念.同时,为做好后面的延伸学习的准备工作,教师还应该结合恰当的例子从正确方向加以说明引导,使学生从正反两方面加深对概念的理解.对于基本定理和具体的公式,它们的推导过程教师应该给予重视,因为学生只有了解了定理和公式的来龙去脉后,才能将定理和公式牢固地掌握和灵活地应用.另外,教师在例题的选择上要精挑细选,不求多,但求具有代表性和一定的灵活性,这样可以更好地帮助学生理解定理和掌握公式.只有建立了概率论与数理统计的知识结构体系,学生学习这门课才能有更好的效果.
二、丰富教学形式,在教学中提高学生学习兴趣
1.加强师生互动
课堂教学效果的提高,与师生间的互动是密不可分的.传统的教学模式是教师为主体,只重视传授知识,忽视了学生的学习主动性、创造性的培养,学生只是被动地接受教师所教授的知识.在这样的学习过程中,学生的注意力很快就不能集中,容易产生疲劳,学习效率低下.要让学生的学习效率提高,就必然要加强师生间的互动.例如,教师可以采用课堂提问和做练习的方式,引起学生的注意,促使学生认真思考问题,集中精力.在时间较宽裕的前提下,可以随机地抽查学生到黑板上做练习题,让其他学生对黑板上的解题作出评判和分析.这样既锻炼了学生对知识的应用能力,提高了学生的学习兴趣,教师又可以了解到学生对知识的掌握程度,师生间交流更加丰富,学生变被动为主动,课堂互动效果更好.
2.采用多媒体教学
随着科学计算机多媒体技术的飞速发展,高校中都普遍配备了功能齐全的多媒体教室.概率统计课程理论性和应用性较强,内容较多,难度较大,而教学时数有限.采用传统教学与多媒体教学相结合的方法,可以克服学时数紧张的问题,大大提升教学效果.教师可以根据教学需要,把一些教学内容制作成教学课件,将要讲解的理论知识更形象地展示给学生,这样既节约板书时间,增加了课堂的信息量,也增强学生的印象,提高了学生的学习兴趣和课堂教学效率.例如,讲解“伯努利试验、伯努利分布和它的应用”时,可以用课件动态地演示该随机试验的过程,利用网上的高尔顿钉板经典试验、二项分布试验,使学生深刻理解什么是伯努利分布,同时教师也更容易讲清楚该分布用于解决什么问题.又如,讲解数据的统计描述统计思想时,可以用多媒体教学形式展示直方图和经验分布函数图形,使学生更容易理解直方图和经验分布函数图形的构图原理.采用多媒体教学,丰富了教学形式,提高了教学效率和教学水平,推进概率论与数理统计课程建设的发展.这种教学形式体现了以人为本的教学理念,在教学过程中不但培养了学生的兴趣,还将创造性的数学思维能力发挥出来.
三、融入建模思想,将理论应用和实践相互结合
概率论与数理统计通常被认为是一门较难学的课,概念抽象是主要原因.在传统的教学方式中,教师注重于知识结构的系统性和严密性,忽视了数学理论在解决实际问题中的作用, 致使学生在实践中遇到概率问题往往束手无策,概率统计模型无法建立,不会用概率的方法分析问题和解决问题.因此,教师应该对于以往的教学方法进行改革,在注重概率论与数理统计课程理论教学的同时,应着重培养学生将生活中的实际问题转化为数学模型,并且能对模型的求解结果作出合理的专业解释的能力.结合目前全国大学生数学建模竞赛,引入适当的实际问题应用例子,把数学建模思想融入课堂教学,引导学生建立合适的数学模型,用所学的数学理论进行解决.这样,学生既将所学理论应用于实践,又通过实践理解了概念,激发了学生的求知欲,学生的创新能力和合作意识都得到了提高.
四、健全考核制度,科学合理地考核评价学生
传统的教学方法导致学生学习的主要目的就是如何通过考试,学生的学习非常被动.要改变这种状况,就要对考核制度进行改革.首先,实行教考分离的原则,坚持期末考试统一命题、统一评分标准、流水阅卷.这样就实现了考试制度的规范化,从而有力地保证了教学质量,调动了教与学两个积极性.其次,开卷和闭卷相结合.对于概率论与数理统计课程的重要内容如古典概型的计算、数学期望与方差、常见统计分布等必须熟练掌握,其他比较抽象难懂内容适当了解掌握就可以了.最后,提高平时成绩在期末总评成绩中的权重.平时成绩的考察可从平时课堂到课率,回答问题情况,每次课后留的作业、思考题,学完每一章后安排小测验等方面进行.这样学生课堂上会积极主动,课后也能认真完成作业及时复习所学知识,可以比较有效地提高学生的学习主动性和积极性,并且取得良好的教学效果.
五、结束语
通过上述几个方面可改进传统的教学模式,激发学生学习概率论与数理统计这门课程的兴趣,使得原本枯燥的数学理论变得生动有趣,提高教学质量和效果.当然在教学的实践中仍存在不少问题,每一位高校教师都更应不断地提高自身素质,认真地去总结和思考,将知识更好地传授给学生.
【参考文献】
[1]林伟初,等.概率论与数理统计.上海:同济大学出版社,2008.
[2]李永明,盛世明.概率论与数理统计教学改革的探索和实践[J].上饶师范学院学报,2008,(6):-19.
[3]李春丽.案例教学法在“概率论与数理统计”教学中的运用[J].中国电力教育,2012,27(14):83-84.
[4]张国权.应用概率统计[M].北京:科学出版社,2003.