2016中考数学各类题型答题策略及复习计划
中考即将到来,对于解题及计划方面同学们要如何准备呢?接下来是小编为大家带来的2016中考数学各类题型答题策略及复习计划,供大家参考。
2016中考数学各类题型答题策略及复习计划:
一、把握动向,研究中考试题
1.对题目的审查要认真、仔细:审题的正确是正确解题的开始和基础,对题目的阅读,除了需较好的阅读能力外,还应结合数学学科的特点,做到读懂题,弄清题意。
2.对题目的解答要准确,要合乎题目的要求。
(1)选择题的解答:中考数学题的选择题均为单项选择题。试题的特点是概念性强、针对性强,具有一定的迷惑性,主要考查学生对基础知识和基本数学能力掌握的程度。解答的主要方法有以下几种:
①直接判断法:利用所学知识和技能直接解出正确答案。
②排除法:如果计算或推导不是一步进行,而是逐步进行,即从题干中条件或选项入手,经过推理、判断,把不符合条件的选项逐个排除,直到找出正确答案。
③验证法:有些选择题可以找出合适的验证条件,再通过验证找出正确的答案,亦可把供选择的答案代入题中,进而找出正确答案。
④特殊值法:有些选择题所涉及的数学命题与字母的取值范围有关,在解题时可考虑在取值范围内选取满足条件的特殊值或特殊图形。通过推理验算,否定错误选项,找出正确答案。
(2)填空题的解答:中考试题中,填空题失分率较高,因此探求填空题的解法就显得十分必要。解填空题的基本要求是“正确、合理、迅速”。正确是解题之本,合理是迅速的前提,迅速的基础是概念清楚、推理清晰、运算熟练、合理跳步、方法恰当。常用的方法有:
①间接法:就是从题设条件出发,通过计算、分析推理得到正确答案的解法。它是普遍使用的常规方法。但值得一提的是,解填空题首先考虑间接解法,不要一味的按常规题处理而单纯使用直接法。
②图像法:数形结合是重要的数学思想。以直观的图示显示抽象的数量关系,把思想对象变成可观察的东西,有助于解决问题。
③特例法:根据题设条件的特征,选取恰当的特例,从而通过简单的运算,而获取正确答案的方法。
(3)综合题的解答:综合题是泛指题目本身或在解题过程中,涉及数学中多个知识点,问题的解决往往需要灵活运用分析、综合、变换、转化、联想、类比、探索、归纳等多种数学思想方法,具有较高能力要求的数学题。解答综合题的策略:
①问题转化策略:在解决问题时,将原问题进行变形,使其转化,直至最后归结为自己熟悉的问题,或已经解决的问题。
②挖掘隐含策略:有些数学问题存在着有待挖掘的隐含条件,解题时若能发掘并利用,就可找到解答的突破口。
③分解组合策略:把一个“大问题”变换成一组“小问题”来处理。这种解题的策略称为分解;把若干“小问题”合二为一,集中解决问题的全局,这种解题的策略称为组合。
④揭示背景策略:每个数学问题都有其背景,从揭示背景入手,是十分有效的解题策略。
(4)探索性试题的解答:探索性试题是近几年来中考常见的开放型试题,也是中考数学试题的一种热点题型,所占分值较高,往往成为“压轴题”,它能够考查学生阅读能力、观察能力、试题归纳和类比能力、综合运用知识能力和探索能力。常见的探索性试题的类型:
①条件探索型:即由问题给定的结论去寻找有待补充或完善的条件,解题时需执果索因,充分利用结论和有限的已知条件,通过计算或推理,找出使得结论成立的其他条件。条件探索题的解法类似于分析法,假设结论成立,逐步探索其成立的条件。
②猜想探索型:要探索的结论往往需要从简单情况或特殊情况入手进行归纳,大胆猜想得出结论。然后进行论证。
③判断探索型:是指在某些题设条件下,判断数学对象是否具有某种性质。解题时,通常先假设被探索的数学性质存在,并将其构造出来,再利用题设条件和数学结论将其肯定或否定,这类问题综合性强,题型新颖,判断对象有时比较隐蔽,需把握特征做出准确判断。
④存在探索型:即问题在某种题设条件下,判断具有某种性质的数学对象是否存在,结论常以“存在”或“不存在”两种形式出现。解这类题的方法:先假设结论存在,然后从题设条件出发进行推理,若推理所得结论与条件相一致,说明其存在;否则,说明其不存在。
⑤规律探索型:在一定条件下,需探索发现有关数学对象所具有的规律性或不变性问题。这类题主要是利用特殊点、特殊数量、特殊图形、特殊情形等进行归纳、概括,从特殊到一般寻找规律和启发求解。
3.对题目的书写要规范、清晰
考试是在一定的时间内完成一定数量题目的解答。所以应该做到稳中有快、快中求准且快而不乱。要提高答题速度,除了上述的审题能力和应答能力外,还要提高书写能力。书写能力不仅是写字快,还要写得内容简练,写得规范,写得符合要求。切记不可字迹潦草,更不可乱涂乱改。
二、根据以上制定合理的复习计划
切实可行的复习计划能让复习有条不紊地进行下去,避免复习时的随意性和盲目性。我们将中考的数学复习分为三轮进行。
第一轮:基础知识系统复习。
1.我们按照数与式、方程(组)与不等式(组)、函数及其图像、统计与概率、几何的基本概念与三角形、四边形、相似图形、解直角三角形、圆及视图等10大模块。按照课程标准给学生重新梳理哪些知识点是识记,哪些知识点是理解,哪些知识点是运用。
2.我们通过典型的例、习题讲解让学生掌握学习方法,对例、习题能举一反三,触类旁通,变条件、变结论、变图形、变式子、变表达方式等。
3.我们定期检测,及时反馈。练习要有针对性、典型性、层次性,不能盲目的加大练习量。要定期检查学生完成的作业。我们对于作业、练习、测验中的问题,采用集中讲授和个别辅导相结合,因材施教,全面提高复习效率。
第二轮:专题复习
第二轮专题复习的主要目的是为了将第一轮复习知识点、线结合,交织成知识网,注重与现实的联系,以达到能力的培养和提高。“专题复习”我们按照中考题型分为“填空、选择专题”、“规律性专题”、“探索性专题”、“阅读材料专题”、“开放性专题”等。在进行这些专题复习时,我们根据历年中考试卷命题的特点,精心选择一些新颖的、有代表性的题型进行专题训练。
第三轮:综合训练(模拟练习)。
这一阶段,重点是查漏补缺,提高综合解题能力。我们通过讲评训练学生的解题策略,加强解题指导,提高学生的应试能力。具体做法是:从近一、两年的中考卷中选题,编制与中考数学试题完全接轨的、符合新课程标准及命题特点和规律的、高质量的模拟试卷进行训练,每份的练习要求学生独立完成,老师要及时批改,重点讲评,讲解时要善于引导学生自己去发现规律、问题,使学生在主动学习中去体会,感悟概念、定理和规律。在复习中要求学生严格按照中考要求答题,按标准格式答题,纠正答题过程中的不良习惯,对于试卷的错误要认真分析,找出错误的原因和解决的办法。并对每次训练结果进行分析比较,既可发现问题,查漏补缺,又可积累考试经验,培养良好的应试心理素质。