考研数学的学习方法
数学是考研中的重中之重,那该如何学好呢?接下来,小编就和大家分享考研数学的学习方法,希望对各位有帮助!
考研数学的学习方法一:
1.概念学习法
“概念学习法”是学习高等数学的基本方法之一。这一方法顾名思义,就是从基本概念入手。这些概念一般都很抽象,必须理解其数学意义。基本概念是课程知识体系的支撑点,掌握了基本概念就等于抓住了纲。从概念入手,一旦了解了概念,把握住概念中的核心词汇,就如同把握了公式中的各个元素,在做题的时候就有坚实的基础,容易对症下药。数学的考题总是有严密的科学性,精确的答案,因而在打牢基础的前提下,万变不离其中的灵活运用概念,一切难题都会迎刃而解。
2.重视预习与复习
强化课前预习和课后复习。由于信息容量大、内容抽象、新旧知识关联密切、讲课不是“照本宣科”,因此,做好课前预习是提高听课效率的重要手段和方法。数学科目不像有的文字学科是分板块分部分的,一个部分没有学好在学另一个部分的时候,相关性不强就可以从头来学,对于这部分的分数不会有太大影响。而数学科目是循序渐进的,基础没打好,积下的问题在未来的学习中就会像滚雪球一样越滚越大,让人不堪重负,最终只能弃戟投降。强调课前预习和课后复习,能够帮助扫清每次学习中所预留或余留的问题,为数学取得高分扫清障碍。
另外,预习也是提高自学能力的有效途径。预习要达到的目的,一是复习新课要引用的旧知识点,二是发现问题,提出问题,使听课能有的放矢。
课后复习,既是学习的重要环节,又是一种学习的方法。这一阶段是一个丰富的消化知识的过程,包括思考、置疑、解难、分析与综合、归纳与小结,可以用到的学习方法有“联想学习法”、“比较学习法”、“求师学习法”、“交友学习法”等等。需要你思考、思考再思考;需要你多问,懂得“知不知,则有知;无不知,则无知”的道理。复习的主要目的就是加强对教学内容的理解。即弄清每个知识点的内容是什么?叫“知其所以然”,最后还要知道它的价值和意义,“知其然”。
3.加强实践,多做题
学习的基本矛盾是不知与知的矛盾、知识与能力的矛盾。所以,学习包含两个过程:从不知到知的过程,将知识转化为能力的过程。从某种意义上来说,后一个过程更加重要。知识只有转化为能力才有力量。数学教育的一个直接目的就是解决数学问题,将所学的基本概念、基本定理和基本方法转化为抽象思维、逻辑推理及运算能力。做大量的数学题是必然的途径。做题的过程反过来又加深了对基本概念、基本定理的理解,对基本方法的掌握,相辅相成。因此,在课后复习的基础上,大量地做数学题是学习数学最重要的方法。
4.在理解的基础上加深记忆。
记忆是学习过程中一个非常重要的环节,是掌握知识的手段。俄国生理学家谢切诺夫说过:“人的一切智慧财富都是与记忆相联系着的,一切智慧的根源都在于记忆。”从某种意义上说,没有记忆就没有学习,人在认识过程中就无积累,就没有继承。一切如过眼烟云。当然也不能死记硬背,正如歌德所说:“你所不理解的东西,是你无法占有的”。
考研数学的学习方法二:
一、把握原则,早准备、早计划、早复习
所谓原则,就是要按照大纲复习,吃透大纲。考研数学试题极少出现过超纲现象,考生把全部基本的概念、原理搞懂了,就几乎相当于押中全部考题。因此,在复习过程中,一定要针对大纲和教材具体研究,将二者有机的结合起来。也不要完全迷信考纲,有时会出现考纲里没有考试中却出现的情况(如:2003年数学四中的第八大题,特例,请区别对待)。结合本科教材和大纲,先吃透基本概念、基本方法和基本定理。数学是一门逻辑性极强的演绎科学,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。对基本概念、定理记不全、记不牢,理解不准确,基本解题方法掌握不好等因为忽略了基本而失分的现象在近年的考试中出现很多。
把握原则,要同“三早”结合起来,数学需要一定量的消化理解时间,只有早做安排,才能圆满地完成打好基础、提高能力、查漏补缺、应对考试的整个复习过程。一般情况下数学在大三下学期就开始着手准备,此时主要工作是把课本中的定理等内容过一边,考研班可以选择此时上,或者也可以在暑期上。从暑期或秋季开始,就要买本全面的参考书来开始系统的复习。
二、选择好教材与辅导材料
基于工学、经济学、管理学门类各学科专业对硕士研究生入学所应具备的数学知识和能力的不同要求,数学统一考试试卷分为数学一、数学二、数学三和数学四。因此,考生首先要根据自己的专业选择好适合自己的教材,而后选择辅导材料。
在选择辅导书时,一定要看这本书是否涵盖了考试大纲,是否系统整理出并点出了考试重点,设置了各个层次、各种类型的题目,对方法和技巧有专门的训练和讲解。有一些教材没有涵盖大纲要求的全部内容(如:函数平均值这个考点,在很多教材中都找不到,大纲中却出现了)。
三、重视基础,灵活运用,多练习
数学的复习基本可以分为两个层次,一是基础性的训练,二是思维上的训练。
基础性的训练,要从复习之初就加以重视。从2003年阅卷情况来看,考生失分的主要原因是基本功不过关,大多数考生往往因为一个考点没掌握而影响了整道题的运算,最终导致失分。所以考生在复习过程当中一定要重视数学概念、原理的掌握和计算过程的训练,争取在考试过程中,只要是会的就不丢分。没有基本功而刻意追求方法和技巧,抠一些难题、偏题没有任何意义,绝大部分的方法和技巧是建立在有一定基本功基础之上的。因此,平时的训练中一定要有计算量的训练,在数学考试中,填空和选择占了全部分数的1/3左右,这部分题的计算量和难度相对来说较小,是最容易得分的部分。如果想过线或者取得高分,这部分就不能掉以轻心。由于这部分对计算准确性的要求很高,考生在日常训练中更要注重计算量和计算准确性的训练。
思维上的训练,存在于整个复习过程中,在最后考试的时候得以充分检验。在平常的复习过程中,要有意识的培养逆向思维、抽象思维、和定向思维的能力。在训练中,要注意理解和总结一些技巧性的东西,有意识的提高自己思维的灵活性。要争取一题多种解法,即概念要相通,在自我训练过程中多思考,灵活运用概念原理。
要进行综合性试题和应用题训练。数学考试会出现一些应用到多个知识点的综合性试题和应用型试题。这类试题一般比较灵活,难度也要大一些。在数学首轮复习期间,可以不将它们作为强化重点,但也应逐步进行一些训练,积累解题思路,同时这也有利于对所学知识的消化吸收,彻底弄清楚有关知识的纵向与横向联系,转化为自己真正掌握的东西。
四、充分利用历年试题
利用历年试题,有助于总结归纳解题思路、套路和经验。数学考试不需背诵,也不要自由发挥,全部任务就是解题,而基本概念、公式、结论等也只有在反复练习中才会真正理解与巩固。做题时特别要强调分析研究题目和解题思路。数学试题千变万化,其知识结构却基本相同,题型也相对固定,往往存在明显的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。考数学一的同学,最好看看往年的其它类数学的真题,如经济类的概率、数二的线代等等,一方面这些题目有可能难于数一的,另一方面,这些考题有可能稍作变换后就出现在后些年的数一考试中。