初中数学一次函数教学设计

2017-03-10

一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。一次函数是初中数学学习的重要内容。本文是小编为大家整理的初中数学一次函数教学设计,欢迎阅读!

初中数学一次函数教学设计

一、教学目标:

1、知道一次函数与正比例函数的定义.

2、理解掌握一次函数的图象的特征和相关的性质;

3、弄清一次函数与正比例函数的区别与联系.

4、掌握直线的平移法则简单应用.

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:

重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:

1、一次函数与正比例函数的定义 :

一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数

正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2. 一次函数与正比例函数的区别与联系:

(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。

基础训练:

1. 写出一个图象经过点(1,- 3)的函数解析式为 : 。

2.直线y = - 2X - 2 不经过第 象限,y随x的增大而 。

3.如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是: 。

4.已知正比例函数 y =(3k-1)x,,若y随x的增大而增大,则k是: 。

5、过点(0,2)且与直线y=3x平行的直线是: 。

6、若正比例函数y =(1-2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1y2,则m的取值范围是 : 。

7、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y = -4。

8、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为 。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。(1)求线段AB的长。(2)求直线AC的解析式。

四、教学反思:

教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。

课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问题的答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。

从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。

初中数学一次函数教案

1、教材分析

(1)知识结构

(2)重点、难点分析

重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础.

难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置的确定.

2、教法建议

(1)在教学中,组织学生寻找一些身边的有关“连接”的实际问题,画出比例图,既调动学生的积极性,培养了兴趣,又获得了知识;

(2)在教学中,以“实际问题——概念引出——理解——实际应用”为主线,开展在教师组织下,以学生为主体,活动式教学.相切在作图中的应用(一)

教学目标:

(1)理解线段与弧、弧与弧连接的概念及连接的原理;

(2)通过对 “连接”等概念的教学,培养学生的理解能力;

(3)通过线段与弧的连接,圆弧与圆弧的连接,培养学生的作图能力;

(4)“渗透”世界上很多事物是互相联系着的,并且在一定条件下相互转化.

教学重点:

正确理解连接的原理,初步掌握线段与圆弧连接、圆弧与圆弧连接的实质,会进行各种连接.

教学难点:

连接原理的正确理解和作图时圆心、半径的确定

教学活动设计:

(一)实际问题引出概念

我们在生活中常见到一些机器零件,它的边缘是圆滑的,我们最熟悉的操场上的跑道,它的跑道线也是很圆滑的.

想一想:跑道线是怎样的线组成的?

画一画:跑道的大致图形.

指导学生发现线线的位置关系,引出连接的有关概念:

1、由一条线(线段或圆弧)平滑地过渡到另一条线上,这种平滑地过渡,称圆弧连接,简称连接.

2、连接时,线段与圆弧、圆弧与圆弧在连接处相切.

3、外连接、内连接.

组织学生阅读理解教材内容

(二)深刻理解概念

“连接”是“平滑地过渡”,怎样算“平滑“?像下面图中,实线画出的线段和圆弧,圆弧和圆弧,虽然也有相切的关系,但它们不是连接.

理解:线与线连接有两个必备条件:①连接时,线段与圆弧,圆弧与圆弧在连接处相切.②线段与圆弧应分居在圆心与切点所在直线的两侧;圆弧与圆弧分居在连心线的两侧,二者缺一不可.

(三)圆弧与线段、圆弧与圆弧连接图形的画法

例1: 已知:线段AB和r(如图).

求作: ,使它的半径等于r,,并且在点A与线段AB连接.

作法:1、过点A作直线PA⊥AB.

2、在射线AP取AO=r.

3、以O为圆心,r为半径作 ,使AB、 在OA的两侧.

就是所求作的弧.

说明:画圆弧与线段的连接,主要运用了切线的性质定理的推论2:经过切点且垂直于切线的直线必过圆心,找出了圆心,圆弧也就不难画了.

例2、 已知:如图, 的半径为R1,圆心为O1;线段R2.

求作:半径为R2的 ,使 与 在点A外连接.

作法:1、连结O1A,并且延长到点O2,使O1 O2 = R1+ R2.

2、以O2为圆心,O1 O2为半径作 ,使 与 在的两侧.

就是所求作的弧.

说明:画圆弧与圆弧的连接,主要运用“两圆相切,切点一定在连心线上”这个结论.

练习题:P148练习,1、2.

(三)小结

主要内容:

1、什么是连接?什么是外连接?什么是内连接?

2、任何一种连接,其实质就是两线相切,在切点处相连接,是切点两侧的线段和圆弧或圆弧与圆弧相连接.

3、对于给出的题目,画出连接图形关键在于确定圆心.

(四)作业

教材P151习题A组16.

课外题:画一个生活中的有关连接图形的比例图,下节课展示.

相切在作图中的应用(二)

教学目标:

(1)进一步理解连接等概念及连接的原理;

(2)进一步培养学生的作图能力;

(3)通过对作图题的分析,培养学生的分析问题能力.

教学重点:

深刻理解连接的意义,能对具体图形熟练地进行弧连接.

教学难点:

作图时圆心、半径的确定

教学活动设计:

(一)概念复习与理解

练习1、下列命题中,正确的是(C)

(A)将一段弧和一条线段连到一起的图形叫连接;

(B)一段给出半径的圆弧可以和一直线连接;

(C)两段给出不等半径的圆弧可以用内、外两种连接方式连接;

(D)两段圆弧内切就是内连接.

练习2、内、外连接的区别是( C )

(A)内连接两弧在连心线同侧,而外连接两弧在连心线两侧;

(B)内连接两弧在切点同旁,外连接两弧在切点两旁;

(C)内连接是内切两圆弧连接,外连接是外切两圆弧连接;

(D)内连接是外切两圆弧连接,外连接是内切两圆弧连接.

(二)连接图形的应用

例3、(教材P148)如图,要把零件中直角A加工成半径为15mm的圆角(即用一条半径为15mm的圆弧连接边AB与边AC)在图上画出这条圆弧.

分析:圆弧的半径已知,要画出这条圆弧,只要求出它的圆心即可.因为圆弧要与AB和AC都相切。所以圆心到边AB和AC的距离都等于15mm,实际上四边形AEOP是正方形,它的顶点O在∠CAB的平分线上.

(参看教材P148)

充分给学生时间让学生自己分析、研究、写出画法,画出图形.

练习:把两边长分别为8cm和5cm的矩形的4个直角改画成圆角,使圆弧的半径等于1cm.

(三)展示作品

对上节课课外作业中较好的连接图形,展示.既提高学生的学习积极性,又激发学生在教学过程中的参与热情.

(四)小结

1、连接在实际生活中的应用,可以改变物体的表面形状.

2、任何一种连接的问题经过分析后都能转化为基本图形:“线段与弧的连接;圆弧与圆弧的内连接;圆弧与圆弧的外连接.

3、连接的关键是确定所求圆弧所在圆的圆心.

4、线段可在一点处与两条弧同时连接.

(五)作业 教材P154中18,B组2.

探究活动

问题:如图三圆两两相切,切点分别为C、O、D,与半圆O分别切于点A、E、B,请你找出图中除线段AB和弧以外的6条从A点平滑过渡到B点且没有重复弧的路线,并指出在经过个点处是什么连接(内连接、外连接).

更多相关阅读

最新发布的文章