高二数学不等式的公式定理记忆口诀
2017-06-15
高中数学中通常不等式中的数是实数,字母也代表实数,下面是小编给大家带来的高二数学不等式的公式定理记忆口诀,希望对你有帮助。
数学不等式的公式定理记忆口诀
解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。
图形函数来帮助,画图建模构造法。
数学不等式例题
例1
判断下列命题的真假,并说明理由.
若a>b,c=d,则ac>bd(假,因为c.d符号不定)
若a+c>c+b,则a>b;(真)
若a>b且ab<0,则a<0;(假)
若-a<-b,则a>b;(真)
若|a|b2;(充要条件)
说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.
例2
a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥)
说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.
例3
设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小.
说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想