高考必记数学公式汇总
高考数学里有很多公式,为了帮助大家更好的学习数学,下面是小编给大家带来的高考必记数学公式汇总,希望对你有帮助。
高考必记数学公式(一)
1、函数的单调性
(1)设x1、x2[a,b],x1x2那么
f(x1)f(x2)0f(x)在[a,b]上是增函数;
f(x1)f(x2)0f(x)在[a,b]上是减函数.
(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.
2、函数的奇偶性
对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、解三角形公式
正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径
余弦定理:a2=b2+c2-2bc*cosA
sin(A+B)=sinC
sin(A+B)=sinAcosB+sinBcosA
sin(A-B)=sinAcosB+sinBcosA
sin2A=2sinAcosA
cos2A=2(cosA)2-1=(cosA)2-(sinA)2=1-2(sinA)2
tan2A=2tanA/[1-(tanA)2]
(sinA)2+(cosA)2=1
4、常用的诱导公式有以下几组:
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα
公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα
公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinα
高考必记数学公式(二)
椭圆
1、中心在原点,焦点在x轴上的椭圆标准方程:其中x²/a²+y²/b²=1,其中a>b>0,c²=a²-b²
2、中心在原点,焦点在y轴上的椭圆标准方程:y²/a²+x²/b²=1,其中a>b>0,c²=a²-b²
参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)
双曲线
1、中心在原点,焦点在x轴上的双曲线标准方程:x²/a-y²/b²=1,其中a>0,b>0,c²=a²+b².
2、中心在原点,焦点在y轴上的双曲线标准方程:y²/a²-x²/b²=1,其中a>0,b>0,c²=a²+b².
参数方程:x=asecθ;y=btanθ(θ为参数)
抛物线
参数方程:x=2pt²;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0
直角坐标:y=ax²+bx+c(开口方向为y轴,a≠0)x=ay²+by+c(开口方向为x轴,a≠0)
离心率
椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。且当01时为双曲线。
圆锥曲线
椭圆
双曲线
抛物线
标准方程
x²/a²+y²/b²=1(a>b>0)
x²/a²-y²/b²=1(a>0,b>0)
y²=2px(p>0)
范围
x∈[-a,a]
x∈(-∞,-a]∪[a,+∞)
x∈[0,+∞)
y∈[-b,b]
y∈R
y∈R
对称性
关于x轴,y轴,原点对称
关于x轴,y轴,原点对称
关于x轴对称
顶点
(a,0),(-a,0),(0,b),(0,-b)
(a,0),(-a,0)
(0,0)
焦点
(c,0),(-c,0)
(c,0),(-c,0)
(p/2,0)
【其中c²=a²-b²】
【其中c²=a²+b²】
准线
x=±a²/c
x=±a²/c
x=-p/2
渐近线
——————
y=±(b/a)x
—————
离心率
e=c/a,e∈(0,1)
e=c/a,e∈(1,+∞)
e=1
焦半径
∣PF₁∣=a+ex
∣PF₁∣=∣ex+a∣
∣PF∣=x+p/2
∣PF₂∣=a-ex
∣PF₂∣=∣ex-a∣
焦准距
p=b²/c
p=b²/c
p
通径
2b²/a
2b²/a
2p
参数方程
x=a·cosθ
x=a·secθ
x=2pt²
y=b·sinθ,θ为参数
y=b·tanθ,θ为参数
y=2pt,t为参数
过圆锥曲线上一点
x0·x/a²+y0·y/b²=1
x0x/a²-y0·y/b²=1
y0·y=p(x+x0)
(x0,y0)的切线方程
斜率为k的切线方程
y=kx±√(a²·k²+b²)
y=kx±√(a²·k²-b²)
y=kx+p/2k