七年级数学下平行线单元达标测试卷

2017-04-17

我坚信,我们付出了汗水,经受了考验,理想中殿堂的大门就一定会为我们而敞开,考试顺利,七年级数学单元考试取得好成绩哦!小编整理了关于七年级数学下平行线单元达标测试卷,希望对大家有帮助!

七年级数学下平行线单元达标测试题

一、选择题(每小题3分,共36分)

1.如图,BE平分∠ABC,DE∥BC,则图中相等的角共有( )

A.3对 B.4对 C.5对 D.6对

2.如图所示,直线l1∥l2,∠1=55°,∠2=62°,则∠3为( )

A.50° B.53° C.60° D.63°

3.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )

A.10° B.20° C.25° D.30°

4.(2015•河北中考)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )

A.120° B.130° C.140° D.150°

5.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是( )

A.30° B.45° C.60° D.75°

6.如图所示,∠AOB的两边OA、OB均为平面反光镜,且∠AOB=28°.在OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB =( )

A.28° B.56° C.100° D.120°

7.如图所示,直线a,b被直线c所截,现给出下列四个条件:

①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.

其中能判断a∥b的条件的序号是( )

A.①② B.①③ C.①④ D.③④

8.如图所示,AB∥CD,直线EF与AB、CD分别相交于点G,H,∠AGH=60°,则∠EHD的度数是( )

A.30° B.60° C.120° D.150°

9.若直线a∥b,点A、B分别在直线a、b上,且AB=2 cm,则a、b之间的距离( )

A.等于2 cm B.大于2 cm

C.不大于2 cm D.不小于2 cm

10.如图所示,直线a∥b,直线c与a、b相交,∠1=60°,则∠2等于( )

A.60° B.30° C.120° D.50°

11.如图所示,把矩形ABCD沿EF折叠,若∠1=50°,则∠AEF等于( )

A.110° B.115° C.120° D.130°

12.如图,△DEF是由△ABC平移得到,且点B、E、C、F在同一直线上,若BF=14,CE=6,则BE的长度为( )

A.2 B.4 C.5 D.3

二、填空题(每小题3分,共24分)

13.如图所示,在不等边△ABC中,已知直线DE∥BC,∠ADE=60°,则图中等于60°的角还有 .

14.一个宽度相等的纸条按如图所示方法折叠,则∠1= .

15.如图所示,已知∠1=∠2,再添加条件 可使CM∥EN.(只需写出一个即可)

16.如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是 .

17.如图,标有角号的7个角中共有_______对内错角,________对同位角,_______对同

旁内角.

18.货船沿北偏西62°方向航行,后因避礁先向右拐28°,再向左拐28°,这时货船的航行方向是 .

19.如图所示,若∠1=82°,∠2=98°,∠3=77°,则∠4= .

20.如图,已知∠1=∠2,∠ =35°,则∠3=_____.

三、解答题(共40分)

21.(8分)已知:如图,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F.

22.(8分)如图所示,要想判断AB是否与CD平行,我们可以测量哪些角?请写出三种方案,并说明理由.

23.(8分)如图所示,已知AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,求∠EAB的度数.

24.(8分)如图所示,已知∠ABC=90°,∠1=∠2,∠DCA=∠CAB,试说明:CD平分∠ACE.

25.(8分)如图,在四边形ABCD中,AD∥BC,BC>AD,将AB,CD分别平移到EF和EG的位置,若AD=4 cm,BC=8 cm,求FG的长.

七年级数学下平行线单元达标测试卷参考答案

1.C 解析:∵ DE∥BC,∴ ∠DEB=∠EBC,∠ADE=∠ABC,∠AED=∠ACB.

又∵ BE平分∠ABC,∴ ∠ABE=∠EBC,即∠ABE=∠DEB.

∴ 图中相等的角共有5对.故选C.

2.D 解析:如图所示,∠5=∠1=55°,因为l1∥l2,所以∠4=∠2=62°,由三角形内角和定理得∠3=180°-∠4-∠5=180°-62°-55°=63°.

3.C 解析:由题意,得∠1+∠2=60°,所以∠2=60°-∠1=60°-35°=25°.

4.C 解析:如图,过点C作CM∥AB, ∴ .

∵ AB∥EF, ∴ CM∥EF.

∵ ,∴ , ,

∴ .

5.B 解析:因为∠EAB=45°,所以∠BAD=180°-∠EAB=180°-45°=135°.因为

AB∥CD,所以∠ADC=∠BAD=135°,所以∠FDC=180°-∠ADC=45°.故选B.

6.B 解析:∵ QR∥OB,∴ ∠AQR=∠AOB=28°,∠PQR+∠QPB=180°.

由反射的性质知,∠AQR=∠OQP=28°,∴ ∠PQR=180°-28°-28°=124°,

∴ ∠QPB=180°-∠PQR=180°-124°=56°.

7.A

8.C 解析:∠BGH=180°-∠AGE=180°-60°=120°,由AB∥CD,得∠EHD=∠BGH= 120°.

9.C 解析:当AB垂直于直线a时,AB的长度为a、b间的距离,即a、b之间的距离为2 cm;当AB不垂直于直线a时,a、b之间的距离小于2 cm,故a、b之间的距离小于或等于2 cm,也就是不大于2 cm,故选C.

10.A 解析:要求∠2的度数,根据对顶角的性质,可得∠2=∠3,所以只要求出∠3的度数即可解决问题.因为a∥b,根据“两直线平行,同位角相等”,可得∠3=∠1=60°,所以∠2=∠3=60°.

11.B 解析:由折叠的性质,可知∠BFE= =65°.因为AD∥BC,所以∠AEF=180°-∠BFE=115°.

12.B 解析:由平移的性质知BC=EF,即BE=CF, .

13.∠B

14.65° 解析:根据题意得2∠1=130°,解得∠1=65°.故填65°.

15.此题答案不唯一,可添加DM∥FN等.

16.130° 解析:因为AB∥CD,所以∠B=∠C=50°.因为BC∥DE,所以∠C+∠D=180°,所以∠D=180°-50°=130°.

17.4;2;4 解析:共有4对内错角,分别是∠1和∠4,∠2和∠5,∠6和∠1,∠5和∠7;2对同位角:分别是∠7和∠1,∠5和∠6;4对同旁内角:分别是∠1和∠5、∠3和∠4、∠3和∠2、∠4和∠2.

18.北偏西62° 解析:根据同位角相等,两直线平行可知,货船未改变航行方向.

19.77°

20.35° 解析:因为∠1=∠2,所以AB∥CE,所以∠3=∠B.

又∠B=35°,所以∠3=35°.

21.证明:∵ ∠BAP+∠APD=180°,

∴ AB∥CD.∴ ∠BAP=∠APC.

又∵ ∠1=∠2,∴ ∠BAP−∠1=∠APC−∠2,即∠EAP=∠APF,

∴ AE∥FP.∴ ∠E=∠F.

22.解:∠EAB=∠C⇒AB∥CD(同位角相等,两直线平行);

∠BAD=∠D⇒AB∥CD(内错角相等,两直线平行);

∠BAC+∠C=180°⇒AB∥CD(同旁内角互补,两直线平行).

23.解:∵ AB=BC ,∴ ∠BAC=∠ACB=180°-110°=70°.

∴ ∠B=180°-70°×2=40°.

∵ AE∥BC,∴ ∠EAB=∠B=40°.

24.解:∵ ∠DCA=∠CAB(已知),

∴ AB∥CD(内错角相等,两直线平行),

∴ ∠ABC+∠BCD=180°(两直线平行,同旁内角互补).

∵ ∠ABC=90°(已知),∴ ∠BCD=90°.

∵ ∠1+∠2+∠ACD+∠DCE=180°(平角的定义),

∴ ∠2+∠DCE=90°,∴ ∠2+∠DCE=∠1+∠ACD.

∵ ∠1=∠2(已知),∴ ∠DCE=∠ACD.

∴ CD平分∠ACE(角平分线的定义).

25.解:因为AD∥BC,且AB平移到EF,CD平移到EG,

所以AE=BF,DE=CG,所以AE+DE=BF+CG,即AD=BF+CG.

因为AD=4 cm,所以BF+CG=4 cm.

因为BC=8 cm,所以FG=8-4=4(cm).

更多相关阅读

最新发布的文章