八年级数学期末复习资料

2017-05-15

课后及时的复习数学可以极大程度的积累知识。 下面是小编为大家精心推荐的八年级数学期末复习资料,希望能够对您有所帮助。

八年级数学期末复习资料(一)

勾股定理的应用

常见问题:

1、求最短路径问题。如“蚂蚁爬树”、“到两个点的路程之和最短”等问题。

2、“通过问题”。如“过门洞”、“路线穿过公园”等问题。

3、“干扰问题”。如“台风影响”、“噪音影响”等问题。

4、阴影面积问题。

5、作图中的作2,3,5,等问题。

§15 数据的收集与表示

生活中的数据无处不在,当大量的数据呈现在我们面前时,我们要收集、整

理、分析这些数据,从而为我们的决策提供依据

频数、总次数、频率之间的关系(用公式表示)

频数== 总数×频率 总次数== 频数÷频率 频率== 频数

÷总数

调查和借助统计图表是收集数据的基本方法.做统计图表是处理数据、表示数据

的基本手段

1.常见的统计图有:(1) 扇形统计图 (2) 折线统计图 (3) 条形统计图

扇形统计图能清楚地表示各部分的总体中所占的百分比,条形图能准确地表示

出每个项目的具体数目,折线图能清楚地反映事物的变化趋势

2.扇形统计图及其特点:

(1)扇形统计图是利用圆和扇形来表示 总数 和部分的比例关系,

即用圆表示 总数 .

用扇形表示 部分对象所占的比例 ,扇形的大小反映 频率的大小

(2)扇形统计图能清楚的表示各部分在总体中所占 频率

3扇形中心角计算方法:

(1)扇形的中心角=3600 ×频率 .

(2)若已知扇形统计图,用量角器量出每个扇形 圆心角 的读数.

(3)部分占总体的百分比=总体100%.

4.画扇形统计图的步骤

(1) ;

(2) ;

(3) ;

八年级数学期末复习资料(二)

整式的乘除

§12.1幂的运算

一、同底数幂的乘法

1、法则:a·a·a·„„=a(m、n、p„„均为正整数) 文字:同底数幂相乘,底数不变,指数相加。

2、注意事项:

(1)a可以是实数,也可以是代数式等。

如:2·3·4=2+3+4=9;(-2)2·(-2)3=(-2)2+3=(-2)5=-25; (2)3·()4=(2)3+4=(2)7;(a+b)3·(a+b)4·(a+b)= (a+b)3+4+1=(a+b)8

(2)一定要“同底数幂”“相乘”时,才能把指数相加。

(3)如果是二次根式或者整式作为底数时,要添加括号。

二、幂的乘方

mnmn1、法则:(a)=a(m、n均为正整数)。 mnpm+n+p+„„

推广:{[(am)n]p}s=amn p s

文字:幂的乘方,底数不变,指数相乘。

2、注意事项:

(1)a可以是实数,也可以是代数式等。

如:(2)3=2×3=6;[(2)3]4=(2)3×4=(2)12;[(a-b)2]4= (a-b)2×4=(a-b)8

(2)运用时注意符号的变化。

mnmn(3)注意该法则的逆应用,即:a= (a),如:a15= (a3)5= (a5)3

三、积的乘方

1、法则:(ab)=ab(n为正整数)。推广:(acde)=acde 文字:积的乘方等于把积的每一个因式都分别乘方,再把所得的幂相乘。

2、注意事项:

(1)a、b可以是实数,也可以是代数式等。

3 nnnnnnnn

3222222如:(2)=2=4;(2×3)=(2)×()=2×3=6;

(-2abc)3=(-2)3a3b3c3=-8a3b3c3;[(a+b)(a-b)]2=(a+b)2(a-b)2

(2)运用时注意符号的变化。

(3)注意该法则的逆应用,即:annb =(ab)n;如:23×3= (2×3)3=63,3

(x+y)(x-y)=[(x+y)(x-y)]

四、同底数幂的除法

1、法则:am÷an=am-n(m、n均为正整数,m>n,a≠0)

文字:同底数幂相除,底数不变,指数相减。

2、注意事项:

(1)a可以是实数,也可以是代数式等。

如:4÷3=4-3=;(-2)5÷(-2)3=(-2)5-3=(-2)2=4; (2)6÷()4=(2)6-4=(2)2=2;(a+b)16÷(a+b)14= (a+b)16-14=(a+b)2=a2+2ab +b2

(2)注意a≠0这个条件。

(3)注意该法则的逆应用,即:am-n222 = am÷an;如:a x-y= ax÷ay,(x+y)2a-3=(x+y)÷(x+y) 2a3

八年级数学期末复习资料(三)

整式的乘法

一、单项式与单项式相乘

法则:单项式与单项式相乘,只要将它们的系数与系数相乘,相同字母的幂相乘,多余的字母照搬到最后结果中。

33如:(-5a2b2)·(-4 b2c)·(-ab)=[(-5)×(-4)×(-)]·(a2·a)·(b2·b2)·c 22

=-30a3b4c

二、单项式与多项式相乘

法则:(乘法分配律)只要将单项式分别去乘以多项式的每一项,再将所得的积相加。

如:(3x2)(x22x1)(-3x2)·(-x2)+(-3x2)·2 x一

(-3x2)·1=3x46x33x2

三、多项式与多项式相乘

法则:(1)将一个多项式中的每一项分别乘以另一个多项式的每一项,再将所得的积相加。

如:()( ma+mb+na+nb

(2)把其中一个多项式看成一个整体(单项式),去乘以另一个多项式的

每一项,再按照单项式与多项式相乘的法则继续相乘,最后将所得的积相加。

如:(m+n)(a+b)= (m+ n)a+( m +n)b= ma+ na+mb+nb

§12.3 乘法公式

、两数和乘以这两数的差

1、公式:(a+b)(a-b)=a-b;名称:平方差公式。

2、注意事项:(1)a、b可以是实数,也可以是代数式等。

如:(10+9)(10-9)=102-92=100-81=19;(2xy+a)(2xy-a)=(2xy)2-a2=4 x2y2-a2; (a+b+)( a+b -)=(2xy)2-a2=4 x2y2-a2;

(2)注意公式中的第一项、第二项各自相同,中间是“异号”的情况,才能用平方差公式。

(3)注意公式的来源还是“多项式×多项式”。

二、完全平方公式

1、公式:(a±b)=a±2a b+b;名称:完全平方公式。

2、注意事项:(1)a、b可以是实数,也可以是代数式等。

如:(2+3)2=(2)2+2×2×3+32=2+62+9=11+62;(mn-a)

2=(mn)2-2mn·a+ a2= m2n2-2mna+ a2;

( a+b -)2=( a+b)2-2( a+b)+2= a2+2a b+b2-2a-b +2;

(2)注意公式运用时的对位“套用”;

(3)注意公式中“中间的乘积项的符号”。

3、补充公式:(a+ b+ c)=a+c+b+2a b+2bc+2ca

特别提醒:利用乘法公式进行整式的运算时注意“思维顺序”是:“一看二套三计算”。

更多相关阅读

最新发布的文章