高中数学圆方程教学设计

2017-06-01

圆方程是高中数学常考的一个知识点,下面小编为你整理了高中数学圆方程教学设计,供你参考。

数学圆方程教学设计【教学目标】

1、 知识与技能:

(1)掌握圆的标准方程。

(2)会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程。

(3)会判断点与圆的位置关系。

2、 过程与方法:

(1)进一步培养学生用代数方法研究几何问题的能力。

(2)加深对数形结合思想的理解和加强待定系数法的运用。

3.情感、态度与价值观:

(1)培养学生主动探究知识、合作交流的意识。

(2)让学生感受数学,体验数学;从走入数学到走出数学,生活处处有数学,数学就在我身边,体会到数学知识、思想方法和精神来源于生活,还要服务于生活;寓思想教育于教学。让学生体会到数学的美以及数学的价值与魅力。

数学圆方程教学设计【学情分析】

对圆的方程有个初步的认识以及在上章学习了直线与方程的基础上,学习圆的方程,学生还是可以接受。在教学过程中,主要采用启发性原则,并且与已经学过的直线方程进行类比,发挥学生的思维能力、想象能力,由易到难,逐步加深。

数学圆方程教学设计【重点难点】

重点:圆的标准方程和圆的标准方程特点的明确。

难点:会根据不同的条件写出圆的标准方程。

数学圆方程教学设计【教学过程】

第一学时 评论(0) 教学目标

教学活动 活动1【导入】新闻联播片段

全党同志与全国各族人民紧密团结在以习近平同志为总书记的党中央周围。

请结合数学中圆知识,谈谈你对这句话的理解?

活动2【讲授】问题1.

在直角坐标系中,以A (a,b)为圆心,r为半径的圆上的动点M(x,y) 满足怎样的关系式?活动3【活动】想一想!

圆心在坐标原点,半径长为r的圆的方程是什么?

活动4【导入】试试你的眼力!判断下列方程是否为圆的标准方程:

(x-2)2 +y=8;

(x-2)2-y2=8;

(2x-2)2+y2=8;

(x-2)2+y2=0;

(x-2)2+y2=a;

(2x-2)2+(2y-4)2=8。

答案:都不是,第6个可以化为圆的标准方程。

活动5【活动】再试一下!

圆(x−1)2+(ay−2)2=1−a 的圆心坐标和半径分别是什么?

答案:圆心坐标为(1,—2),半径是 √2

活动6【活动】问题2.

要写出圆的标准方程,只需知道圆的哪些量?

怎样判断一点是否在一个圆上?

学生回答,教师点评.

活动7【活动】例1

写出圆心为A(2, -3),半径长为5的圆的方程,并判断点M1(5,−7),M2((−√5,−1) 是否在这个圆上。

学生回答,教师点评后,学生阅读教科书上本题解法.

活动8【活动】探究

你能判断点M2在圆内还是在圆外吗?

学生回答,教师点评。

点与圆心距离比半径大等价于点在圆外。

点与圆心距离比半径小等价于点在圆内。

点与圆心距离等于半径等价于点在圆外等价于点的坐标满足方程。

活动9【讲授】解题收获

1.从确定圆的两个要素即圆心和半径入手,直接写出圆的标准方程——直接法。

2.类似于点与直线方程的关系:点在圆上等价于点坐标满足圆方程活动10【活动】试一试!

例2 △ABC的三个顶点的坐标分别是A(5,1),B(7,-3),C(2, -8),求它的外接圆的方程.

师:△ABC的外接圆的圆心简称什么?

学生回答

师:△ABC的外心是什么的交点?

学生回答

师:求圆的标准方程,只需知道圆心坐标和圆的半径。这三点都在圆上,其坐标一定是满足所求圆的方程。这样就可以设出圆的标准方程。

学生阅读教材例2解法。

师:提示:方程组中

(1)− (2)得到什么?

(1)− (3)得到什么?

然后,怎样就可以求出圆心坐标和半径。

活动11【讲授】解题收获

先设出圆的标准方程,再根据已知条件建立方程组,从而求出圆心坐标和半径的方法——待定系数法。

活动12【活动】动手折一折

请同学们准备一个锐角三角形纸片,能否用手工的方法找到此三角形外接圆的圆心?

学生回答过程.

把三角形的任意两个顶点重合进行对折,就可以得到边的垂直平分线,垂直平分线的交点即是三角形的外心。

师:把圆的弦对折,折线一定经过圆心。即圆心一定在弦的垂直平分线上。

活动13【活动】Let’s try

例3 已知圆心为C的圆经过点A(1,1)和B(2, -2),且圆心C在直线m:x - y+1=0 上,求圆心为C的圆的标准方程。

由学生阅读例3,学生总结解题步骤。

活动14【讲授】解题收获

由圆的几何性质直接求出圆心坐标和半径,然后写出标准方程——几何性质法。

活动15【活动】小结

一个方程

三种方法

一种思想

活动16【讲授】作业布置

作业:教材P124习题A组第2题和第3题.

课下探究:

(1)平面内到一定点的距离等于定长的点轨迹是圆。点的轨迹是圆的方法很多, 请试着找出来,并和其他同学交流。

(2)直线方程有五种形式,圆除了标准方程,还有其它形式吗?

活动17【导入】结束语

圆心半径确定圆,

待定系数很普遍;

大家站在同一圆,

彰和谐平等友善;

半径就像无形线,

把大家心聚一点;

垂直平分折中线,

就能折出同心愿;

中国腾飞之梦圆。

活动18【测试】课堂测试

1.圆C:(x−2)2+(y+1)2=3 的圆心坐标为( )

A(2,1) B(2,—1) C(—2,1) D(—2,—1)

2.以原点为圆心,2为半径的圆的标准方程是( )

A x2+y2=2 B x2+y2=4

C (x−2)2+(y−2)2=8 D x2+y2=√2

3 圆心为(1,1)且与直线x+y=4 相切的圆的方程是( )

A (x−1)2+(y−1)2=2 B (x−1)2+(y−1)2=4

C (x+1)2+(y+1)2=2 D (x+1)2+(y+1)2=4

4 圆A:(ax+2)2+y2=a+3 ,则此圆的半径为______________。

5 已知一个圆的圆心在点C(—3,—4),且经过原点。

(1)求该圆的标准方程;

(2)判断点M(—1,0),N(1,—1),P(3,—4)和圆的位置关系。

6. 已知△AOB的顶点坐标分别是A(8,0), B(0,6),O(0,0),求△AOB外接圆的方程.

7 求过点A(1,—1)B(—1,1)且圆心在直线x+y−2=0 上的圆方程

参考答案:1 B 2 B 3 A 4 2或√2

5 (1) (x+3)2+(y+4)2=25

(2)M在圆内,N在圆上,P在圆外。

6 (x−4)2+(y−3)2=25 。

7 (x−1)2+(y−1)2=4

更多相关阅读

最新发布的文章