高等数学学习方法指导

2017-01-12

高等数学不比以往初中、高中的数学来得简单,下面小编就和大家分享高等数学的学习方法,希望对大家有帮助!

高等数学学习方法指导一:

1、按部就班。数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

2、强调理解。概念、定理、公式要在理解的基础上记忆。我的经验是,每新学一个定理,便尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

3、基本训练。学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉常考的题型,训练要做到有的放矢。

4、标出重点。平常看题看课本的时候,碰到有好的解题方法或重点内容,可以用鲜艳的彩笔划出来,以便以后复习时能一目了然.

高等数学学习方法指导二:

一、摒弃中学的学习方法

与高中相比,大学的高等数学课程则不一样,教材仅是作为一种主要的参考书。要求学生以课堂上老师所讲的重点和难点为线索,通过大量地阅读教材和同类的参考书,以充分消化和掌握课堂上所讲授内容,然后做课后习题巩固所掌握知识,这就是进行反复地创造性的学习。这是一种艰苦的脑力劳动,它不仅要求学生主动地、自觉地进行学习,同时还要在松散地环境下能约束自己,并且要掌握较好的学习方法,才能把所要学习的知识学得扎实,为专业课程的学习打下良好基础。

二、抓好三个环节

什么是学习高等数学的最好方法呢?这根据每个人的学习时的习惯和理解问题的能力不同而异,但就一般说来,均应抓好以下三个环节。其一是课前预习。这一过程很重要,因为只有课前预习过,才会在听课时做到心中有数,即老师所讲的内容哪些是属于难以理解的,什么是重点等,这样带着一些问题去听老师讲课,效果就很明显了,同时预习的过程中也就培养了你的自学能力,这对自己来说将是终身受益的。预习的过程也不需要花太多时间,一般地一次课内容花三、四十分钟左右时间就可以了。在预习时不必要把所有问题弄懂,只要带着这些不懂的问题去听课就行。其二是上课用心听讲,并且要记好课堂笔记。

对于上课要用心听讲大家都明白,但要记好课堂笔记的重要性,有的同学就不以为然了,认为教材上都有,大可不必去记,有的同学甚至说:中学里老师就告诉我们,数学课不用记笔记。其实这种认识是错误的,也是中学里带来的一种不良的学习习惯。首先可以说:老师对于高等数学课程的讲授,绝对不是教材上的内容的简单重复,而是翻阅了大量的同类参考书,而结合自己的教学经验与体会,反复推敲怎样讲授才能使学生更好的领会和掌握后才写成讲稿的。所以毫不夸张地说:教师的授课教案既有以往成功的经验体会,同时也有过去的教训的借鉴。而且将一次课的内容归纳成有条理性的几点,有些典型的例题、习题的适当选择等,这些都是教科书上所没有完全具备的,因此,学生在听课的同时必须记好课堂笔记,同时这种好的学习习惯即勤动笔对于自己学习及工作能力的培养也是大有好处的。其三,课后复习,整理笔记,认真完成课后作业。课后的自习,不少人是赶快做作业,这也是一种不好的习惯,其实下课后应该进一步认真钻研教材或教学参考书,在完全弄懂本次课内容之后,整理充实课堂笔记,有些需要理解的地方添上自己的心得与体会,把书本上的知识真正变成自己掌握的知识,然后再完成作业,这要比下课就赶作业的效果要好得多,而且完成作业的速度也要快得多。

三、善于归纳,经历“由厚变薄”的过程

人们常说:读书学习要善于把书本“从薄到厚,还要从厚到薄”。在高等数学的学习中,这条经验可以说是非常实在的。因为学习的本身就是知识的不断积累,这样书也就“由薄变厚”了,内容也就越来越多了,但是人的记忆力是有限的,要全面记住所有有用的东西而不遗忘是很难办到的,怎么办呢?这就需要对自己学的知识加以归纳总结,找出它们之间的内在联系和共同本质的东西,然后使之系统化条理化,从而记住最有代表性的知识点,而其余部分只要在此基础上经过推理便可以了解,这就是“由厚变薄”。所以在每章结束或一个单元的内容讲完后,应该进行总结,把其中基本概念、定理、基本公式及计算方法加以归纳,然后有条理用大脑记忆起来,这样所学知识就完全属于你的了。

高等数学的学习建议:

1。举例具体化。如理解导数时,自己也举个例子,如f(x)=820302X2+811211(x的平方)。

2。比喻形象化。就是打比方,比如把一个二元函数的图形想成邻家女孩的头上的草帽。

3。类比初级化。比如把二元函数跟一元函数类比,泰勒公式想成二次函数,好理解。

4。多书参考法。去你们图书管借几本不是一个作者写的高数教材,虽然讲的内容都一样,但不同的作者往往对同一个问题从不同的角度表述,对你来说,从很多不同的角度、例子理解同一个问题,往往就容易多了。Just have a try!

5。不懂暂跳法。对一些定理的证明、推导过程等,如果一时不明白没关系,暂时放过,记下这个疑点待以后解决就可以了。

更多相关阅读

最新发布的文章