数学手抄报图

2016-11-08

数学思想方法产生于数学认知活动,又反回来对数学认知活动起重要指导作用,它是数学知识的精髓和灵魂,是知识转化为能力的桥梁。你做的手抄报有体现你的数学思想方法吗?下面是小编为大家带来的数学手抄报图,希望大家喜欢。

古代数学家赵爽的故事

据载,他研究过张衡的天文学著作《灵宪》和刘洪的《乾象历》,也提到过“算术”。他的主要贡献是约在222年深入研究了《周髀》,该书是我国最古老的天文学著作,唐初改名为《周髀算经》该书写了序言,并作了详细注释。该书简明扼要地总结出中国古代勾股算术的深奥原理。其中一段530余字的“勾股圆方图”注文是数学史上极有价值的文献。他详细解释了《周髀算经》中勾股定理,将勾股定理表述为:“勾股各自乘,并之,为弦实。开方除之,即弦。”。又给出了新的证明:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实。”。“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明。

出入相补原理:

即2ab+(b-a)^2=c^2,化简便得a^2+b^2=c^2。其基本思想是图形经过割补后,其面积不变。刘徽在注释《九章算术》时更明确地概括为出入相补原理,这是后世演段术的基础。赵爽在注文中证明了勾股形三边及其和、差关系的24个命题。例如 √(2(c-a)(c-b)) + (c-b) = a, √(2(c-a)(c-b)) + (c-a) = b, √(2(c-a)(c-b)) + (c-a) + (c-b) = c等等。他还研究了二次方程问题,得出与韦达定理类似的结果,并得到二次方程求根公式之一。此外,使用“齐同术”,在乘除时应用了这一方法,还在‘旧高图论”中给出重差术的证明。赵爽的数学思想和方法对中国古代数学体系的形成和发展有一定影响。

赵爽自称负薪余日,研究《周髀》,遂为之作注,可见他是一个未脱离体力劳动的天算学家。一般认为,《周髀算经》成书于公元前100年前后,是一部引用分数运算及勾股定理等数学方法阐述盖天说的天文学著作。而大约同时成书的《九章算术》,则明确提出了勾股定理以及某些解勾股形问题。赵爽《周髀算经注》逐段解释《周髀》经文。

数学手抄报图图一

数学手抄报图图二

数学手抄报图图三

数学手抄报图图四

数学手抄报图图五

数学故事:十五的诀窍

当一个农村集市开张时,除了耕牛,所有的人都很兴奋。

今年,王财主开办了一个叫“十五”的新游戏,他说:“村民们请留步,游戏的规则非常简单。我们只是把硬币放在这些1至9的数字上,谁先放都无所谓。你们放铜币,我放银币。谁先放了三个相加等于15的不同数字,谁就可得到案子上所有的钱。”

让我们看一个典型的玩法。一位妇人先把一枚铜币放在7上。由于7已被放上,其他人就不能再放了。对其它数字也是如此。王财主把一枚银币放在8上。妇人下一次将把铜币放在2上,这样再放一次6,三个数字相加为15,就可以赢了。但王财主把一枚银币放在6上,破坏了她的打算。下一次他放在1上就可以赢了。妇人看出了这一威胁,先把一枚铜币放在1上破坏王财主的赢势。王财主将下一枚银币放在4上时暗自得意。妇人看到他下一次放在5上就会赢,还得再破坏他。于是她把铜币放在5上。但王财主放在3上也赢了。因为8+4+3=15。可怜的妇人输掉了4个硬币。

镇长先生觉得这个游戏很有意思。经过长时间的观察,他断定王财主利用了一种秘密系统,使他不可能输,除非他想输。

解决此游戏的诀窍在于认识到这在数学上等同于划井游戏。为欣赏这一魔方的奇妙.让我们列出三个不同数字(除0外)相加等于l5的表,一共有8组:

1+5+9=15

1+6+8=15

2+4+9=15

2+5+8=15

2+6+7=15

3+4+8=15

3+5+7=15

4+5+6=15

现在仔细观察独特的3—3数字魔方:

2 9 4

7 5 3

6 1 8

注意共有8行:3组横行,3组纵行,2组斜行。每一行确定的3组数字之和均为15。因此,每一个赢的组合都是魔方中的一横、一纵或一斜行。现在很容易看出,每次游艺比赛实际上相当于划井游戏,谁先把自己的棋子占满一横、一纵或一斜行,谁就取胜。

在进行15游戏时,如果玩得正确就不会输。如果两个对手都玩得正确,则游戏结果就是平局。然而设盘者的对手由于不知道是在玩划井游戏,因而处于十分不利的地位。这就使设盘者很容易设置对己有利的骗局。

以上是小编给大家整理的数学手抄报图,欢迎大家阅读收藏。

更多相关阅读

最新发布的文章