逻辑思维的培养方法

2017-02-13

逻辑思维是指人们在认识过程中借助于概念、推理等思维形式能动地反映客观现实的理性认识过程,又称理论思维。那么至于怎样培养逻辑思维呢?下面小编就和大家分享逻辑思维的培养方法,希望对大家有帮助!

逻辑思维的培养方法一:

认识大群体与小群体首先,应教给孩子一些有关群体的名称,如家具、动物食品等。使孩子明白,每一个群体都有一定的组成部分。同时,还应让孩子了解,大群体包含许多小群体,小群体组合成了大群体。如动物——鸟——麻雀。

了解顺序的概念这种学习有助于孩子今后的阅读,这是训练孩子逻辑思维的重要途径。这些顺序可以是从最大到最小、从最硬到最软、从甜到淡等,也可以反过来排列。

建立时间概念幼儿的时间观念很模糊,掌握一些表示时间的词语,理解其含义,对孩子来说,无疑是必要的。当孩子真正清楚了“在……之前”、“立即”或“马上”等词语的含义后,孩子也许会更规矩些。

理解基本的数字概念不少学龄前儿童,有的甚至在两三岁时,就能从1“数”到10,甚至更多。与其说是在“数数”,不如说是在“背数”。

父母在孩子数数时,不能操之过急,应多点耐心。让孩子从一边口里有声,一边用手摸摸物品,逐渐过渡到用眼睛“默数”。日常生活中,能够用数字准确表达的概念,父母们应尽量讲得准确。同时,还应注意使用“首先”、“其次”、“第三”等序数词。也可用日常生活中的数字关系,帮助孩子掌握一些增加减少的概念。

掌握一些空间概念成人们往往以为孩子天生就知道“上下左右,里外前后”等空间概念,实际并非如此。父母可利用日常生活中的各种机会引导孩子,比如:“请把勺子放在碗里”。对于孩子来说,掌握“左右”概念要难些。

逻辑思维的培养方法二:

(1)为了提高学生的逻辑活动的能力,则必从概念入手。在教学中教师要引导学生充分认识构成概念的基本条件,揭示概念中各个条件的内在联系,掌握概念的内涵和外延,在此基础上建立概念的结构联系。

(2)引导学生正确使用归纳法,善于分析、总结和归纳。由归纳法推理所得的结论虽然未必是可靠的,但它由特殊到一般,由具体到抽象的认识功能对于科学的发现是十分有用的。

(3)引导学生正确使用类比法,善于在一系列的结果中找出事物的共同性质或相似处之后,推测在其它方面也可能存在的相同或相似之处。

发散思维有助于克服那种单一、刻板和封闭的思维方式,使学生学会从不同的角度解决问题的方法。在课堂教学中,进行发散思维训练常用的方法主要有以下两点:

(1)采用“变式”的方法。变式教学应用于解题,就是通常所说的“一题多解”。一题多解或一题多变,能引导学生进行发散思考,扩展思维的空间。

(2)提供错误的反例。为了帮助学生从事物变化的表象中去揭示变化的实质,从多方面进行思考,教师在从正面讲清概念后,可适当举出一些相反的错误实例,供学生进行辨析,以加深对概念的理解,引导学生进行多向思维活动。

形象思维能力集中体现为联想和猜想的能力。它是创造性思维的重要品质之一,主要从下面几点来进行培养:

(1)要想增强学生的联想能力,关键在于让学生把知识经验以信息的方式井然有序地储存在大脑里。

(2)在教学活动中,教师应当努力设置情景触发学生的联想。在学生的学习中,思维活动常以联想的形式出现,学生的联想力越强,思路就越广阔,思维效果就越好。

(3)为了使学生的学习获得最佳效果,让联想导致创造,教师应指导学生经常有意识地对输入大脑的信息进行加工编码,使信息纳入已有的知识网络,或组成新的网络,在头脑中构成无数信息的链。

4.直觉思维的培养

在数学教学过程我们应当主动创造条件,自觉地运用灵感激发规律,实施激疑顿悟的启发教育,坚持以创造为目标的定向学习,特别要注意对灵感的线形分析,以及联想和猜想能力的训练,以期达到有效地培养学生数学直觉思维能力之目的。

(1)应当加强整体思维意识,提高直觉判断能力。扎实的基础是产生直觉的源泉,阿提雅说过:“一旦你真正感到弄懂一样东西,而且你通过大量例子,以及与其他东西的联系取得了处理那个问题的足够多的经验,对此你就会产生一种正在发展的过程是怎么回事,以及什么结论应该是正确的直觉。”

(2)要注重中介思维能力训练,提高直觉想象能力。例如,通过类比,迅速建立数学模型,或培养联想能力,促进思维迅速迁移,都可以启发直觉。我们还应当注意猜想能力的科学训练,提高直觉推理能力。

(3)教学中应当渗透数形结合的思想,帮助学生建立直觉观念。

(4)可以通过提高数学审美意识,促进学生数学直觉思维的形成。美感和美的意识是数学直觉的本质,提高审美能力有利于培养学生对数学事物间所有存在着的和谐关系及秩序的直觉意识。

辩证思维的实质是辩证法对立统一规律在思维中的反映。教学中教师应有意识地从以下几个方面进行培养:

(1)辩证地认识已知和未知。在数学问题未知里面有许多重要信息,所以未知实际上也是已知,数学上的综合法强调从已知导向未知,分析法则强调从未知去探求已知。

(2)辩证地认识定性和定量。定性分析着重抽象的逻辑推理;定量分析着重具体的运算比较,虽然定量分析比定性分析更加真实可信,但定性分析对定量分析常常具有指导作用。

更多相关阅读

最新发布的文章