银河是怎么形成的 银河的形成和自转
银河在天球上勾画出一条宽窄不一的带,称为银道带,它的最宽处达30°,最窄处只有4°~5°,平均约20°,这只是银河系中的一部分。那你想怎么银河的形成吗?下面就让小编来给你科普一下银河是怎么形成的。
银河的形成
夏夜星空中从东北向南横跨天空的银河,宛如奔腾的急流,一泻千里。迢迢的银河引起多少美丽的遐想和动人的故事。
其实,一年四季都可以看到银河,只不过夏秋之交看到了银河最明亮壮观的部分。银河经过的主要星座有:天鹅座、天鹰座、狐狸座、天箭座、蛇夫座、盾牌座、人马座、天蝎座、天坛座、矩尺座、豺狼座、南三角座、圆规座、苍蝇座、南十字座、船帆座、船尾座、麒麟座、猎户座、金牛座、双子座、御夫座、英仙座、仙后座和蝎虎座。
银河在天空明暗不一,宽窄不等。最窄只 4°~5°,最宽约 30°。银河为什么是白茫茫的呢?伽利略发明天文望远镜以后,带着这个不解之谜,把望远镜指向银河,原来银河是由密集的恒星组成的。为什么只有这一“带形” 天区的恒星最密集呢?原来是由 1000 多亿颗恒星组成一个透镜形的庞大的恒星体系,我们太阳系就在这个体系之中。我们从太阳系向周围看到盘状的边缘部分呈带形天区。这个天区的恒星投影最密集,这就是我们所看到的银河。这个庞大的恒星体系也由银河得名,叫银河系。
肉眼的极限视星等为5.5以上或光污染指数5级以上才能看到银河,如果肉眼看不到银河,使用最先进的观测仪器也很难看到银河。北半球来说夏季最明显看到银河(在天蝎座、人马座延伸至夏季大三角,甚至仙后座),冬季的那边银河很黯淡(在猎户座与大犬座)。
银河(Milky Way),我国民间又称“天河”、“天汉”。它看起来像一条白茫茫的亮带,从东北向西南方向划开整个天空。在银河里有许多小光点,就像撒了白色的粉末一样,辉映成一片。实际上一颗白色粉末就是一颗巨大的恒星,银河就是由许许多多恒星构成的。像太阳这样的恒星在银河中有2000多亿颗很多恒星有卫星。在太空俯视银河,看到的银河像个旋涡。
晴朗的夜空,当你抬头仰望天空的时候,不仅能看到无数闪闪发光的星星,还能看到一条淡淡的纱巾似的光带跨越整个天空,好像天空中的一条大河,夏季成南北方向,冬季接近于东西方向,那就是银河。过去由于科学还不发达,不知道它究竟是什么,就又给了它一个名称叫做天河,所以我国民间还流传着牛郎织女每年七夕在鹊桥相会等许多唯美的神话故事。
实际上,银河是银河系的一部分,银河系是太阳系所属的星系。因其主体部分投影在天球上的亮带被我国称为银河而得名。是我们置身其内而侧视银河系时所看到的它布满恒星的圆面。由于恒星发出的光离我们很远,数量又多,又与星际尘埃气体混合在一起,因此看起来就像一条烟雾笼罩着的光带,十分美丽。
银河各部分的亮度是不一样的。靠近银心的半人马座方向比其他部分更亮一些。
银河的历史探究
自古以来,气势磅礴的银河就是人们十分注意观察和研究的对象。古人不知道银河是什么,把银河想像为天上的河流。我国著名的神话故事牛郎织女鹊桥相会,这鹊桥就是铺设在这天河之上。夜空中分处银河两边的牛郎星和织女星特别引人注目。牛郎星是天鹰座中最亮的星,在银河的东岸。织女星在银河的西岸,是天琴座中最亮的星。西方人把银河想像成是天上的神后喂养婴儿时流淌出来的乳汁形成的,叫它为牛奶路。英文中的银河(Milky Way)就是这么来的。
美丽的神话故事不能代替令人满意的科学解释。银河究竟是什么呢?望远镜发明以后,这个问题得到了正确的答案。17世纪初期,伟大的意大利科学家伽利略把他自己制造的望远镜对准了银河,惊喜地发现银河原来是由许许多多、密密麻麻的恒星聚集在一起而形成的。由于这些恒星距离我们太远,人的肉眼分辨不清,把它看成了一条明亮的光带。
银河的自转
前面提到太阳系与银河中央的关系,到俄特与林德柏证明银河自转,才迎刃而解。俄特是荷兰人,林德柏是瑞典人,他们在一九二六年就开始著手研究银河自转。他们的方法是研究太阳系附近的星体运行。最重 要的发现是高速星(对太阳的相对速度),大多数离银河平面较远,而他们的运行方向呈高度的不对称,完全集中在一边(附图七)。林德柏首先看清楚了这个现象。他认为银河星可以按其分布分成更多系统,在银河平面的星绕银河中心迅速转动。分布在银河上下有相当距离的星则转动较缓。太阳是属于前一系统,所以在太阳系看后一系统的星,多半都逆著我们走,所以才会有这种不对称,同时,我们知道只有接近银河系中心的星转得比太阳系快,这样我们也可观察出银河中心的位置,它是在人马星座方向,凭这理由他支持谢甫利的银河观。俄特更进一步仔细分析属于我们一个系统的星体,他发现我们不仅绕著人马星座转动,而且这个系统的转动是里面快,外面慢的较差转动(Differential rotation),太阳系距银河中央为一万秒差距(Parsec,一秒差距等于3.24光年)太阳公转速度是每秒钟二百五十公里,即每小时九十万公里,这虽然很快,但绕银河中央一周仍须二亿五千万年。俄特与林德柏虽然奠定了银河自转与太阳系附近的较差自转,但是真正自银河中央到太阳系以外是如何自转,到底里面比外面快多少,依旧茫然无知,一直到二十二年以后,俄特与他的助手用无线电望远镜观测银河系中氢原子气体的运行,才弄清楚。银河系主要成份是星体,占全质量百分之九十五以上,星际之间并不是真空,而充塞了很稀薄氢原子气体(HⅠregion)约占全质量百分之四除了氢原子气体以外,尚有星际尘,宇宙线粒子(Cosmicray Particles)氢离子气体(HⅡ region)以及其他物质。我前面提到星际尘能散射星光,所以造成凯卜庭的错误与寇提斯所看到横卧在涡状星系的阴影。普通光学望远镜在银河方向只能看出五千角差而已(一万六千光年),对整个银河的了解,只有管窥之效。但是无线电波则不然,因为它的波长较长,可以在星际通行无阻,所以自一九三七年詹斯基(K.G.Jansky)发现了来自天外的无线电波,使整个天文学大大的迈前了一步。大家都晓得氢原子中有一个电子绕著一个质子转动,电子与质子本身都在旋转(Spin)。旋转方向更改便会放出无线电波,波长约21公厘(cm)。荷兰天文物理学家万德赫(H.C. van de Hulst)在一九四四年还是完全用理论预测这个无线电波。但到一九五一年哈佛大学的伊文与普塞(H.I. Ewenand E. M. Purcell)果然证实了万德赫的预测。俄特与万德赫在荷兰政府鼎力支持下兴建无线电望远镜,致力于银河系的研究,他们最初的结果在一九五二年开始陆续发表,把银河自转,银河的总质量,最要紧是银河系的结构问题逐渐弄清楚。银河自转与质量是有直接关系,角速度(angular velocity)愈近银河中心愈快,从太阳到银河中心一半距离时,自转增加一倍,接近银河中央而角速度增加数倍不止,根据这个自转率,银河质量高度聚集在内部,密度向外递减。