高二数学《概率的基本性质》教学设计

2017-02-20

教学设计是作为教者,基于对学生和教学任务的分析,而对教学目标、教学方法、教学材料、教学进度、课程评估等做出系统设计的一门学科。 教学设计者经常使用教学技术以改进教学。下面是小编为大家整理的高二数学《概率的基本性质》教学设计,希望对大家有所帮助!

高二数学《概率的基本性质》教学设计

教学内容:

1、事件间的关系及运算

2、概率的基本性质

教学目标:

1、了解事件间各种关系的概念,会判断事件间的关系;

2、了解两个互斥事件的概率加法公式,知道对立事件的公式,会用公式进行简单的概率计算;

3、通过学习,进一步体会概率思想方法应用于实际问题的重要性。

教学的重点:事件间的关系,概率的加法公式。

教学的难点:互斥事件与对立事件的区别与联系。

教学的具体过程:

引入:上一次课我们学习了概率的意义,举了生活中与概率知识有关的许多实例。今天我们要来研究概率的基本性质。在研究性质之前,我们先来一起研究一下事件之间有什么关系。

事件的关系与运算

老师做掷骰子的实验,学生思考,回答该试验包含了哪些事件(即可能出现的结果)

学生可能回答:﹛出现的点数=1﹜记为C1, ﹛出现的点数=2﹜记为C2, ﹛出现的点数=3﹜记为C3, ﹛出现的点数=4﹜记为C4, ﹛出现的点数=5﹜记为C5, ﹛出现的点数=6﹜记为C6.

老师:是不是只有这6个事件呢?请大家思考,﹛出现的点数不大于1﹜(记为D1)是不是该试验的事件?(学生回答:是)类似的,﹛出现的点数大于3﹜记为D2,﹛出现的点数小于5﹜记为D3,﹛出现的点数小于7﹜记为E,﹛出现的点数大于6﹜记为F,﹛出现的点数为偶数﹜记为G,﹛出现的点数为奇数﹜记为H,等等都是该试验的事件。 那么大家思考一下这些事件之间有什么样的关系呢?

学生思考若事件C1发生(即出现点数为1),那么事件H是否一定也发生?

学生回答:是,因为1是奇数

我们把这种两个事件中如果一事件发生,则另一事件一定发生的关系,称为包含关系。具体说:一般地,对于事件A和事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作(或)

特殊地,不可能事件记为 ,任何事件都包含 。

练习:写出 D3与E的包含关系(D3 E)

2、再来看一下C1和D1间的关系:先考虑一下它们之间有没有包含关系?即若C1发生,D1

是否发生?(是,即C1 D1);又若D1发生,C1是否发生?(是,即D1 C1)

两个事件A,B中,若,那么称事件A与事件B相等,记作A=B。所以C1 和D1相等。

“下面有同学已经发现了,事件的包含关系和相等关系与集合的这两种关系很相似,很好,下面我们就一起来考虑一下能不能把事件与集合做对比。”

试验的可能结果的全体 ←→ 全集

↓ ↓

每一个事件 ←→ 子集

这样我们就把事件和集合对应起来了,用已有的集合间关系来分析事件间的关系。

3、集合之间除了有包含和相等的关系以外,还有集合的并,由此可以推出相应的,事件A和事件B的并事件,记作A∪B,从运算的角度说,并事件也叫做和事件,可以记为A+B。我们知道并集A∪B中的任一个元素或者属于集合A或者属于集合B,类似的事件A∪B发生等价于或者事件A发生或者事件B发生。

练习:G∪D3 =?G=﹛2,4,6﹜,D3 =﹛1,2,3,4﹜,所以G∪D3 =﹛1,2,3,4,6﹜。若出现的点数为1,则D3发生,G不发生;若出现的点数为4,则D3和G均发生;若出现的点数为6,则D3不发生,G发生。

由此我们可以推出事件A+B发生有三种情况:A发生,B不发生;A不发生,B发生;A和B都发生。

4、集合之间的交集A∩B,类似地有事件A和事件B的交事件,记为A∩B,从运算的角度说,交事件也叫做积事件,记作AB。我们知道交集A∩B中的任意元素属于集合A且属于集合B,类似地,事件A∩B发生等价于事件A发生且事件B发生。

练习:D2∩H=?(﹛大于3的奇数﹜=C5)

5、事件A与事件B的交事件的特殊情况,当A∩B=(不可能事件)时,称事件A与事件B互斥。(即两事件不能同时发生)

6、在两事件互斥的条件上,再加上事件A∪事件B为必然事件,则称事件A与事件B为对立事件。(即事件A和事件B有且只有一个发生)

练习:⑴请在掷骰子试验的事件中,找到两个事件互为对立事件。(G,H)

⑵不可能事件的对立事件

7、集合间的关系可以用Venn图来表示,类似事件间的关系我们也可以用图形来表示。

: A=B:

A∪B: A∩B:

A、B互斥: A、B对立:

8、区别互斥事件与对立事件:从图像上我们也可以看出对立事件是互斥事件的特例,但互斥事件并非都是对立事件。

练习:⑴书P121练习题目4、5

⑵判断下列事件是不是互斥事件?是不是对立事件?

某射手射击一次,命中的环数大于8与命中的环数小于8;

统计一个班级数学期末考试成绩,平均分不低于75分与平均分不高于75分;

从装有3个红球和3个白球的口袋内任取2个球,至少有一个白球和都是红球。

答案:①是互斥事件但不是对立事件;②既不是互斥事件也不是对立事件

③既是互斥事件有是对立事件。

概率的基本性质:

提问:频率=频数试验的次数。

我们知道当试验次数足够大时,用频率来估计概率,由于频率在0~1之间,所以,可以得到概率的基本性质:

1、任何事件的概率P(A),0≦P(A)≦1

2、那大家思考,什么事件发生的概率为1,对,记必然事件为E,P(E)=1

3、记不可能事件为F,P(F)=0

4、当A与B互斥时,A∪B发生的频数等于A发生的频数加上B发生的频数,所以

=+,所以P(A∪B)=P(A)+P(B)。

5、特别地,若A与B为对立事件,则A∪B为必然事件,P(A∪B)=1=P(A)+P(B)→P(A)=1-P(B)。

例题:教材P121例

练习:由经验得知,在某建设银行营业窗口排队等候存取款的人数及其概率如下:

排队人数 0 ~ 10 人 11 ~ 20 人 21 ~ 30 人 31 ~ 40 人 41人以上 概率 0.12 0.27 0.30 0.23 0.08 计算:(1)至多20人排队的概率;

(2)至少11人排队的概率。

三、课后思考:概率的基本性质4,若把互斥条件去掉,即任意事件A、B,则P(A∪B)=P(A)+P(B)-P(AB)

提示:采用图式分析。

更多相关阅读

最新发布的文章