计算机硬件学习心得
当今世界,计算机技术已经深入到各个领域,得到广泛的应用,你知道计算机硬件学习心得是什么吗?接下来就是小编为大家整理的关于计算机硬件学习心得,供大家阅读!
计算机硬件学习心得篇1
每个学校本系里都会开一门离散数学,涉及集合论,图论,和抽象代数,数理逻辑。不过,这么多内容挤在离散数学一门课里,是否时间太紧了点?另外,计算机系学生不懂组合和数论,也是巨大的缺陷。要做理论,不懂组合或者数论吃亏可就太大了。从理想的状态来看,最好分开六门课:集合,逻辑图论,组合,代数,数论。这个当然不现实,因为没那么多课时。也许将来可以开三门课:集合与逻辑,图论与组合,代数与数论。(这方面我们学校已经着手开始做了)
不管课怎么开,学生总一样要学。下面分别谈谈上面的三组内容。
古典集合论,北师大出过一本《基础集合论》不错。 数理逻辑,中科院软件所陆钟万教授的《面向计算机科学的数理逻辑》就不错。现在可以找到陆钟万教授的讲课录像,自己去看看吧。总的来说,学集合/逻辑起手不难,普通高中生都能看懂。但越往后越感觉深不可测。
学完以上各书之后,如果你还有精力兴趣进一步深究,那么可以试一下GTM系列中的《Introduction to Axiomatic Set Theory》和《A Course of Mathematical Logic》。这两本都有世界图书出版社的引进版。你如果能搞定这两本,可以说在逻辑方面真正入了门,也就不用再浪费时间听我瞎侃了。
据说全中国最多只有三十个人懂图论。此言不虚。图论这东东,技巧性太强,几乎每个问题都有一个独特的方法,让人头痛。不过这也正是它魅力所在:只要你有创造性,它就能给你成就感。我的导师说,图论里面随便揪一块东西就可以写篇论文。大家可以体会里面内容之深广了吧!国内的图论书中,王树禾老师的“图论及其算法”非常成功。一方面,其内容在国内教材里算非常全面的。另一方面,其对算法的强调非常适合计算机系(本来就是科大计算机系教材)。有了这本书为主,再参考几本翻译的,如Bondy & Murty的《图论及其应用》,人民邮电出版社翻译的《图论和电路网络》等等,就马马虎虎,对本科生足够了。再进一步,世界图书引进有GTM系列的"Modern Graph Theory"。此书确实经典!国内好象还有一家出版了个翻译版。不过,学到这个层次,还是读原版好。搞定这本书,也标志着图论入了门。
离散数学方面我们北京工业大学实验学院有个世界级的专家,叫邵学才,复旦大学概率论毕业的,教过高等数学,线性代数,概率论,最后转向离散数学,出版著作无数,论文集新加坡有一本,堪称经典,大家想学离散数学的真谛不妨找来看看。这老师的课我专门去听过,极为经典。不过你要从他的不经意的话中去挖掘精髓。在同他的交谈当中我又深刻地发现一个问题,虽说邵先生写书无数,但依他自己的说法每本都差不多,我实在觉得诧异,他说主要是有大纲的限制,不便多写。这就难怪了,很少听说国外写书还要依据个什么大纲(就算有,内容也宽泛的多),不敢越雷池半步,这样不是看谁的都一样了。外版的书好就好在这里,最新的科技成果里面都有论述,别的先不说,至少是“紧跟时代的理论知识”。
组合感觉没有太适合的国产书。还是读Graham和Knuth等人合著的经典“具体数学”吧,西安电子科技大学出版社有翻译版。 抽象代数,国内经典为莫宗坚先生的“代数学”。此书是北大数学系教材,深得好评。然而对本科生来说,此书未免太深。可以先学习一些其它的教材,然后再回头来看“代数学”。国际上的经典可就多了,GTM系列里就有一大堆。推荐一本谈不上经典,但却最简
单的,最容易学的:这本“Introduction to Linear and Abstract Algebra"非常通俗易懂,而且把抽象代数和线性代数结合起来,对初学者来说非常理想,我校比较牛的同学都有收藏。
数论方面,国内有经典而且以困难著称的”初等数论“(潘氏兄弟著,北大版)。再追溯一点,还有更加经典(可以算世界级)并且更加困难的”数论导引“(华罗庚先生的名著,科学版,九章书店重印,繁体的看起来可能比较困难)。把基础的几章搞定一个大概,对本科生来讲足够了。但这只是初等数论。本科毕业后要学计算数论,你必须看英文的书,如Bach的"Introduction to Algorithmic Number Theory"。
计算机科学理论的根本,在于算法。现在很多系里给本科生开设算法设计与分析,确实非常正确。环顾西方世界,大约没有一个三流以上计算机系不把算法作为必修的。算法教材目前公认以Corman等著的"Introduction to Algorithms"为最优。对入门而言,这一本已经足够,不需要再参考其它书。
计算机硬件学习心得篇2
计算机科学和数学的关系有点奇怪。二三十年以前,计算机科学基本上还是数学的一个分支。而现在,计算机科学拥有广泛的研究领域和众多的研究人员,在很多方面反过来推动数学发展,从某种意义上可以说是孩子长得比妈妈还高了。但不管怎么样,这个孩子身上始终流着母亲的血液。这血液是the mathematical underpinning of computer science(计算机科学的数学基础),也就是理论计算机科学。原来在东方大学城图书馆中曾经看过一本七十年代的译本(书皮都没了,可我就爱关注这种书),大概就叫《计算机数学》。那本书若是放在当时来讲决是一本好书,但现在看来,涵盖的范围还算广,深度则差了许多,不过推荐大一的学生倒可以看一看,至少可以使你的计算数学入入门。
最常和理论计算机科学放在一起的一个词是什么?答:离散数学。这两者的关系是如此密切,以至于它们在不少场合下成为同义词。(这一点在前面的那本书中也有体现)传统上,数学是以分析为中心的。数学系的同学要学习三四个学期的数学分析,然后是复变函数,实变函数,泛函数等等。实变和泛函被很多人认为是现代数学的入门。在物理,化学,工程上应用的,也以分析为主。
随着计算机科学的出现,一些以前不太受到重视的数学分支突然重要起来。人们发现,这些分支处理的数学对象与传统的分析有明显的区别:分析研究的问题解决方案是连续的,因而微分,积分成为基本的运算;而这些分支研究的对象是离散的,因而很少有机会进行此类的计算。人们从而称这些分支为“离散数学”。“离散数学”的名字越来越响亮,最后导致以分析为中心的传统数学分支被相对称为“连续数学”。
离散数学经过几十年发展,基本上稳定下来。一般认为,离散数学包含以下学科:
1) 集合论,数理逻辑与元数学。这是整个数学的基础,也是计算机科学的基础。
2) 图论,算法图论;组合数学,组合算法。计算机科学,尤其是理论计算机科学的核心是
算法,而大量的算法建立在图和组合的基础上。
3) 抽象代数。代数是无所不在的,本来在数学中就非常重要。在计算机科学中,人们惊讶地发现代数竟然有如此之多的应用。
但是,理论计算机科学仅仅就是在数学的上面加上“离散”的帽子这么简单吗?一直到大约十几年前,终于有一位大师告诉我们:不是。D.E.Knuth(他有多伟大,我想不用我废话了)在Stanford开设了一门全新的课程Concrete Mathematics。 Concrete这个词在这里有两层含义:
首先:对abstract而言。Knuth认为,传统数学研究的对象过于抽象,导致对具体的问题关心不够。他抱怨说,在研究中他需要的数学往往并不存在,所以他只能自己去创造一些数学。为了直接面向应用的需要,他要提倡“具体”的数学。在这里我做一点简单的解释。例如在集合论中,数学家关心的都是最根本的问题公理系统的各种性质之类。而一些具体集合
的性质,各种常见集合,关系,映射都是什么样的,数学家觉得并不重要。然而,在计算机科学中应用的,恰恰就是这些具体的东西。Knuth能够首先看到这一点,不愧为当世计算机第一人。其次,Concrete是Continuous(连续)加上discrete(离散)。不管连续数学还是离散数学,都是有用的数学!
理论与实际的结合——计算机科学研究的范畴
前面主要是从数学角度来看的。从计算机角度来看,理论计算机科学目前主要的研究领域包括:可计算性理论,算法设计与复杂性分析,密码学与信息安全,分布式计算理论,并行计算理论,网络理论,生物信息计算,计算几何学,程序语言理论等等。这些领域互相交叉,而且新的课题在不断提出,所以很难理出一个头绪来。想搞搞这方面的工作,推荐看中国计算机学会的一系列书籍,至少代表了我国的权威。下面随便举一些例子。
由于应用需求的推动,密码学现在成为研究的热点。密码学建立在数论(尤其是计算数论),代数,信息论,概率论和随机过程的基础上,有时也用到图论和组合学等。很多人以为密码学就是加密解密,而加密就是用一个函数把数据打乱。这样的理解太浅显了。
现代密码学至少包含以下层次的内容:
第一,密码学的基础。例如,分解一个大数真的很困难吗?能否有一般的工具证明协议正确?
第二,密码学的基本课题。例如,比以前更好的单向函数,签名协议等。
第三,密码学的高级问题。例如,零知识证明的长度,秘密分享的方法。
第四,密码学的新应用。例如,数字现金,叛徒追踪等。
在分布式系统中,也有很多重要的理论问题。例如,进程之间的同步,互斥协议。一个经典的结果是:在通信信道不可靠时,没有确定型算法能实现进程间协同。所以,改进TCP三次握手几乎没有意义。例如时序问题。常用的一种序是因果序,但因果序直到不久前才有一个理论上的结果例如,死锁没有实用的方法能完美地对付。例如操作系统研究过就自己去举吧!
如果计算机只有理论,那么它不过是数学的一个分支,而不成为一门独立的科学。事实上,在理论之外,计算机科学还有更广阔的天空。