关于数学的手抄报初中

2016-12-02

数学有着极其重要的科学与社会地位。因此新世纪的新青年必须要懂得数学,具备数学思想。数学的重要性非常强,小编为大家汇总了一些关于数学的手抄报初中,大家可作为参考,希望大家能够获得幫助:

关于数学的手抄报初中:三大几何问题

即古希腊三大几何问题,在数学的歷史上有三个问题始终以可惊的力量坚廿了两千多年。初等几何学到现在至少已有了三千年的歷史,在这期间努力於初等几何学之发展的学者们曾经遇到过很多的难题,而始终绞著学者脑汁的却就是这三个问题。问题是「立方倍积」,「化圆为方」和「三等分角」,由於这三个问题的屹立不移,现在就被合称为「三大问题」。

关于数学的手抄报图片

关于数学的手抄报初中:立方倍积

关於立方倍积的问题有一个神话流传:当年希腊提洛斯(delos)岛上瘟疫流行,居民恐惧也向岛上的守护神阿波罗(apollo)祈祷,神庙里的预言修女告诉他们神的指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停止。”由此可见这神是很喜欢数学的。居民得到了这个指示後非常高兴,立刻动工做了一个新祭坛,使每一稜的长度都是旧祭坛稜长的二倍,但是瘟疫不但没停止,反而更形猖獗,使他们都又惊奇又惧怕。结果被一个学者指出了错误:「稜二倍起来体积就成了八倍,神所要的是二倍而不是八倍。」大家都觉得这个说法很对,於是改在神前并摆了与旧祭坛同形状同大小的两个祭坛,可是瘟疫仍不见消灭。人们困扰地再去问神,这次神回答说:「你们所做的祭坛体积确是原来的二倍,但形状却并不是正方体了,我所希望的是体积二倍,而形状仍是正方体。」居民们恍然大悟,就去找当时大学者柏拉图(plato)请教。由柏拉图和他的弟子们热心研究,但不曾得到解决,并且耗费了後代许多数学家们的脑汁。而由於这一个传说,立方倍积问题也就被称为提洛斯问题。

关于数学的手抄报图片

关于数学的手抄报初中:化圆为方

方圆的问题与提洛斯问题是同时代的,由希腊人开始研究。有名的阿基米得把这问题化成下述的形式:已知一圆的半径是r,圆周就是2πr,面积是πr2。由此若能作一个直角三角形,其夹直角的两边长分别为已知圆的周长2πr及半径r,则这三角形的面积就是(1/2)(2πr)(r)=πr。与已知圆的面积相等。由这个直角三角形不难作出同面积的正方形来。但是如何作这直角三角形的边。即如何作一缐段使其长等於一已知圆的周长,这问题阿基米德可就解不出了。

关于数学的手抄报初中:三等分角

三等分任意角的题也许比那两个问题出现更早,早到歷史上找不出有关的记载来。但无疑地它的出现是很自然的,就是我们自己在现在也可以想得到的。纪元前五、六百年间希腊的数学家们就已经想到了二等分任意角的方法,正像我们在几何课本或几何画中所学的:以已知角的顶点为圆心,用适当的半径作弧交角两的两边得两个交点,再分别以这两点为圆心,用一个适当的长作半径画弧,这两弧的交点与角顶相连就把已知角分为二等分。二等分一个已知角既是这么容易,很自然地会把问题略变一下:三等分怎么样呢?这样,这一个问题就这么非常自然地出现了。

更多相关阅读

最新发布的文章