什么是充分条件 充分条件如何使用

2017-03-28

如果A能推出B,那么A就是B的充分条件。其中A为B的真子集,即属于A的一定属于B,而属于B的不一定属于A,下面就让小编来给你科普一下什么是充分条件。

生活中的充分条件

生活中常用“如果……,那么……”、“若……,则……”和“只要……,就……”来表示充分条件。例如:

1. 如果这场比赛踢平,那么中国男足就能出线。

2. 总参命令:若飞机不能降落则直接伞降汶川。

不过生活中使用这些关联词语时人们往往并不考虑必要性。也就是说,满足A,必然B成立时,我们就说,如果A,那么B,或者说只要A,就B。这样就表达了条件的充分性,至于条件A是不是结果B必需的我们没有考虑。例如:

只要活着,我就要写作。

从客观上看,不满足“活着”,必然“不能写作”。所以“活着”是“我要写作”的充分必要条件。但是实际上说话人在说这句话时,他只想表达满足“我活着”时必然“我要写作”。至于“不活着就不能写作”的情况虽然大家都知道,但不是说话人要表达的意思。

所以生活中这些关联词语只是表达条件是充足的、充分的这个意思,而没有考虑必要性,这和逻辑学的严格定义是不同的。

充分条件的其他说法:充分的条件、充足条件、充足的条件。

逻辑学中的充分条件

定义:如果有事物情况A,则必然有事物情况B;如果没有事物情况A而未必没有事物情况B,A就是B的充分而不必要条件,简称充分条件。紧跟在“如果”之后。

充分条件是逻辑学在研究假言命题及假言推理时引出的。

陈述某一事物情况是另一件事物情况的充分条件的假言命题叫做充分条件假言命题。充分条件假言命题的一般形式是:如果p,那么q。符号为:p→q(读作“p蕴涵于q”)。例如“如果物体不受外力作用,那么它将保持静止或匀速直线运动”是一个充分条件假言命题。

根据充分条件假言命题的逻辑性质进行的推理叫充分条件假言推理。

数学中的的充分条件

有命题p、q,如果p推出q,则p是q的充分条件,q是p的必要条件;如果p推出q且q推出p,则p是q的充分必要条件,简称充要条件。

例如:x=y推出x^2=y^2,则x=y是x^2=y^2的充分条件,x^2=y^2是x=y的必要条件。

a、b一正一负推出ab<0,ab<0推出a、b一正一负,则a、b一正一负和ab<0互为充要条件。

如果p推出q,则p是q的充分条件,q是p的必要条件举例如下

若没有Q成立,则P也不成立

Q是P的必要条件

如:

P: x=1 Q: x^2=1

P是Q的充分条件而不是必要条件(没有x=1,当x=-1,x^2=1)

Q是P的必要条件,没有x^2=1,就没有x=1

充分条件的举例

1. A=“下雨”;B=“地面湿润”。

2. A=“烧柴”;B=“会产生CO2”。

例子中A都是B的充分条件,确切地说,A是B的充分而不必要的条件:其一、A必然导致B;其二,A不是B发生必需的。在例子中,下雨会导致地面湿润,但地面湿润不一定是由下雨导致的,可能是由于泼水导致的;烧柴一定会产生CO2,但产生CO2可能为燃烧甲醇等。这些说明A不是B发生必需的。所以A是B的充分条件,也是不必要条件,即充分不必要条件。

更多相关阅读

最新发布的文章