数学平面向量高复习考题训练题(含答案)

2017-02-22

考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。下面是小编为大家整理的数学平面向量高复习考题训练题,希望对大家有所帮助!

数学平面向量高复习考题训练题及答案

高考专题训练(八) 平面向量

A级——基础巩固组

一、选择题

1.已知向量OA→=(3,-4),OB→=(6,-3),OC→=(2m, m+1).若AB→∥OC→,则实数m的值为( )

A.-3 B.-17

C.-35 D.35

解析 AB→=OB→-OA→=(3,1),因为AB→∥OC→,

所以3(m+1)-2m=0,解得m=-3.

答案 A

2.已知|a|=|b|=2,(a+2b)•(a-b)=-2,则a与b的夹角为( )

A.π6 B.π3

C.π2 D.2π3

解析 由(a+2b)•(a-b)=|a|2+ a•b-2|b|2=-2,得a•b=2,即|a||b|cos〈a,b〉=2,cos〈a,b〉=12.故〈a,b〉=π3.

答案 B

3.(2014•四川卷)平面向量a=(1,2),b=(4,2),c=ma+b(m∈R),且c与a的夹角等于c与b的夹角,则m=( )

A.-2 B.-1

C.1 D.2

解析 ∵a=(1,2),b=(4,2),∴c=m(1,2)+(4,2)=(m+4,2m+2).又∵c与a的夹角等于c与b的夹角 ,∴cos〈c,a〉=cos〈c,b〉.∴c•a|c||a|=c•b|c||b|.即5m+85|c|=8m+2025|c|,解得m=2.

答案 D

4.(2014•全国大纲卷)若向量a,b满足:|a|=1,(a+b)⊥a,(2a+b)⊥b,则|b|=( )

A.2 B.2

C.1 D.22

解析 ∵(a+b)⊥a,|a|=1,∴(a+b)•a=0,

∴|a|2+a•b=0,∴a•b=-1.

又∵(2a+b)⊥b,∴(2a+b)•b= 0.

∴2a•b+|b|2=0.∴|b|2=2.

∴|b|=2,选B.

答案 B

5.设△ABC的三个内角为A,B,C,向量m=(3sinA,sinB),n=(cosB,3cosA),若m•n=1+cos(A+B),则C=( )

A.π6 B.π3

C.2π3 D.5π6

解析 依题意得 3sinAcosB+3cosAsinB=1+cos(A+B),

3sin(A+B)=1+cos(A+B),3sinC+cosC=1,

2sinC+π6=1,sinC+π6=12.又π6<C+π6<7π6,

因此C+π6=5π6,C=2π3,选C.

答案 C

6.在平面上,AB1→⊥AB2→,|OB1→|=|OB2→|=1,AP→=AB1→+AB2→.若|OP→|<12,则|OA→|的取值范围是( )

A.0,52 B .52,72

C.52,2 D.72,2

解析 由题意得点B1,B2在以O为圆心,半径为1的圆上,点P在以O为圆心半径为12的圆内,又AB1→⊥AB2→,AP→=AB1→+AB2→,所以点A在以B1B2为直径的圆上,当P与O点重合时,|OA→|最大为2,当P在半径为12的圆周上,|OA→|最小为72.∵P在圆内,∴|OA→|∈72,2.

答案 D

二、填空题

7.(2014•北京卷)已知向量a,b满足|a|=1,b=(2,1),且λ a+b=0(λ∈R),则|λ|=________.

解析 |b|=22+12=5,由λa+b=0,得b=-λa,

故|b|=|-λa|=|λ||a|,所以|λ|=|b||a|=51=5.

答案 5

8.如图,在△ABC中,BO为边AC上的中线,BG→=2GO→,若CD→∥AG→,且AD→=15AB→+λAC→(λ∈R),则λ的值为________.

解析 因为CD→∥AG→,所以存在实数k,使得CD→=kAG→.CD→=AD→-AC→=15AB→+(λ-1)AC→,又由BO是△ABC的边AC上的中线,BG→=2GO→,得点G为△ABC的重心,所以AG→=13(AB→+AC→),所以15AB→+(λ-1)AC→=k3(AB→+AC→),由平 面向量基本定理可得15=k3,λ-1=k3,解得λ=65.

答案 65

9.在△ABC所在的平面上有一点P满足PA→+PB→+PC→=AB→,则△PBC与△ABC的面积之比是________.

解析 因为PA→+PB→+PC→=AB→,所以PA→+PB→+PC→+BA→=0,即PC→=2AP→,所以点P是CA边上靠近A点的一个三等分点,故S△PBCS△ABC=PCAC=23.

答案 23

三、解答题

10.已知向量AB→=(3,1),AC→=(-1,a),a∈R

(1)若D为BC中点,AD→=(m,2),求a,m的值;

(2)若△ABC是直角三角形,求a的值.

解 (1)因为AB→=(3,1),AC→=(-1,a),

所以AD→=12(AB→+AC→)=1,1+a2.

又AD→=(m,2),所以m=1,1+a=2×2,解得a=3,m=1.

(2)因为△ABC是直角三角形,所以A=90°或B=90°或C=90°.

当A=90°时,由AB→⊥AC→,

得3×(-1)+1•a=0,所以a=3;

当B=90°时,因为BC→=AC→-AB→=(-4,a-1),

所以由AB→⊥BC→,

得3×(-4)+1•(a-1)=0,所以a=13;

当C=90° 时,由BC→⊥AC→,

得-1×(-4)+a•(a-1)=0,

即a2-a+4=0,因为a∈R,所以无解.

综上所述,a=3或a=13.

11.在△ABC中,已知2AB→•AC→=3|AB→|•|AC→|=3BC→2,求角A、B、C的大小.

解 设BC=a,AC=b,AB=c.

由2AB→•AC→=3|AB→|•|AC→|,得2bccosA=3bc,

所以cosA=32.

又A∈(0,π),因此A=π6.

由3|AB→|•|AC→|=3BC→2,得cb=3a2.

于是sinC•sinB=3sin2A=34.

所以sinC•sin5π6-C=34.

sinC•12cosC+32sinC=34,

因此2sinC•cosC+23sin2C=3,

sin2C-3cos2C=0,

即2sin2C-π3=0.

由A=π6知0<C<5π6,

所以-π3<2C-π3<4π3,

从而2C-π3=0,或2C-π3=π,

即C=π6或C=2π3,

故A=π6,B=2π3,C=π6,或A=π6,B=π6,C=2π3.

B级——能力提高组

1.

已知正三角形ABC的边长为1,点P是AB边上的动点,点Q是AC边上的动点,且AP→=λAB→,AQ→=(1-λ)AC→ ,λ∈R,则BQ→•CP→的最大值为( )

A.32 B.-32

C.38 D.-38

解析 如图,BQ→•CP→=(BA→+AQ→)•(CA→+AP→)=[BA→+(1-λ)AC→]•(CA→+λAB→)=AB→•AC→-λAB→ 2-(1-λ)AC→2+λ(1-λ)AB→•AC→=(λ-λ2+1)×cos60°-λ+λ-1=-12λ-122-38,0≤λ≤1,所以当λ=12时,BQ→•CP→的最大值为-38,选D.

答案 D

2.(2014•安徽卷)已知两个不相等的非零向量a,b,两组向量x1,x2,x3,x4,x5和y1,y2,y3,y4,y5均由2个a和3个b排列而成.记S=x1•y1+x2•y2+x3•y3+x4•y4+x5•y5,Smin表示S所有可能取值中的最小值. 则下列命题正确的是________(写出所有正确命题的编号).

①S有5个不同的值;

②若a⊥b,则Smin与|a|无关;

③若a∥b,则Smin与|b|无关;

④若|b|>4|a|,则Smin>0;

⑤若|b|=2|a|,Smin=8|a|2,则a与b的夹角为π4.

解析 对于①,若a,b有0组对应乘积,则S1=2a2+3b2,若a,b有2组对应乘积,则S2=a2+2b2+2a•b,若a,b有4组对应乘积,则S3=b2+4a•b,所以S最多有3个不同的值,①错误;因为a,b是不等向量,所以S1-S3=2a2+2b2-4a•b=2(a-b)2>0,S1-S2=a2 +b2-2a•b=(a-b)2>0,S2-S3=(a-b)2>0,所以S3<S2<S1,故Smin=S3=b2+4a•b,对于②,当a⊥b时,Smin=b2与|a|无关,②正确;对于③,显然Smin与|b|有关,③错误;对于④,设a,b的夹角为θ,则Smin=b2+4a•b>16|a|2+16|a|2cosθ=16|a|2(1+cosθ)≥0,故Smin>0,④正确;对于⑤,|b|=2|a|,Smin=4|a|2+8|a|2cosθ=8|a|2,所以cosθ=12,又θ∈[0,π],所以θ=π3,⑤错误.因此正确命题是②④.

答案 ②④

3.已知向量m=3sinx4,1,n=cosx4,cos2x4.

(1)若m•n=1,求cos2π3-x的值;

(2)记f(x)=m•n,在△ABC中,角A ,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

解 (1)m•n=3sinx4cosx4+cos2x4

=32sin x2+12•cosx2+12=sinx2+π6+12.

又∵m•n=1,∴sinx2+π6=12.

cosx+π3=1-2sin2x2+π6=12,

cos2π3-x=- cosx+π3=-12.

(2)∵(2a-c)cosB=bcosC,

由正弦定理得(2sinA-sinC)cosB=sinBcosC,

∴2sinAcosB-sinCcosB=sinBcosC.

∴2sinAcosB=sin(B+C).

∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0.

∴cosB=12.又∵0<B<π,∴B=π3.

∴0<A<2π3.

∴π6<A2+π6<π2,12<sinA2+π6<1.

又∵f(x)=m•n=sinx2+π6+12,

∴f(A)=sinA2+π6+12.

故函数f(A)的取值范围是1,32.

更多相关阅读

最新发布的文章