北师初一数学知识点总结

2016-11-04

在即将到来的期末考试,同学们要如何准备知识点内容复习呢?下面是小编为大家带来的关于北师初一数学知识点总结,希望会给大家带来帮助。

北师初一数学知识点总结:

1.圆柱:底面是圆面,侧面是曲面 柱体棱体:底面是多边形,侧面是正方形或长方形

2. 锥体

圆锥:底面是圆面,侧面是曲面

棱锥:底面是多边形,侧面都是三角形3. 球体:由球面围成的 (球面是曲面) 4. 几何图形是由点、线、面构成的 。

①几何体与外界的 接触面或我们能看到的 外表就是几何体的 表面。几何的 表面有平面和曲面; ②面与面相交得到线; ③线与线相交得到点。

5. 棱:在棱柱中,任何相邻两个面的 交线都叫做棱.

6. 侧棱:相邻两个侧面的 交线叫做侧棱..所有侧棱长都相等。 7. 棱柱的 上、下底面的 形状相同,侧面的 形状都是长方形。

8. 根据底面图形的 边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的 形状分别为三边形、四边形、五边形、六边形……

9. 长方体和正方体都是四棱柱。

10. 圆柱的 表面展开图是由两个相同的 圆形和一个长方形连成。

11. 圆锥的 表面展开图是由一个圆形和一个扇形连成。

12. 设一个多边形的 边数为n(n≥3,且n为整数),从一个顶点出发的 对角线有(n-3)条;可以把n边形成

弧是一条曲线。 14. 扇形,由一条弧和经过这条弧的 端点的 两条半径所组成的 图形。 15. 凸多边形和凹多边形都属于多边形。有弧或不封闭图形都不是多边形。

正整数(如:1,2,3) 整数

零(0)

负整数(如:1,2,3)有理数 

正分数(如:1,1,5.3,3.8 分数 

23)负分数(如:12,13,2.3,4.8)★数轴的 三要素:原点、正方向、单位长度(三者缺一不可)

★任何一个有理数,都可以用数轴上的 一个点来表示。(反过来,不能说数轴上所有的 点都表示有理数)★如果两个数只有符号不同,那么我们称其中一个数为另一个数的 相反数,也称这两个数互为相反数。(0的 相反数是0)

★在数轴上,表示互为相反数的 两个点,位于原点的 侧,且到原点的 距离相等。

★数轴上两点表示的 数,右边的 总比左边的 大。正数在原点的 右边,负数在原点的 左边。

★绝对值的 定义:一个数a的 绝对值就是数轴上表示数a的 点与原点的 距离。数a的 绝对值记作|a|。 ★正数的 绝对值是它本身;负数的 绝对值是它的 数;0的 绝对值是0。

★绝对值的 性质:除0外,绝对值为一正数的 数有两个,它们互为相反数;

互为相反数的 两数(除0外)的 绝对值相等; 任何数的 绝对值总是非负数,即|a|≥0

★比较两个负数的 大小,绝对值大的 反而小。比较两个负数的 大小的 步骤如下: ①先求出两个数负数的 绝对值; ②比较两个绝对值的 大小; ③根据“两个负数,绝对值大的 反而小”做出正确的 判断。 ★绝对值的 性质: ①对任何有理数a,都有|a|≥0 ②若|a|=0,则|a|=0,反之亦然 ③若|a|=b,则a=±b ④对任何有理数a,都有|a|=|-a| ★有理数加法法则: ①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的 数的 符号,并用较大数的 绝对值减去较小数的 绝对值。

③一个数同0相加,仍得这个数。

★加法的 交换律、结合律在有理数运算中同样适用。 ★灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的 两个数,可以先相加; ②符号相同的 数,可以先相加; ③分母相同的 数,可以先相加; ④几个数相加能得到整数,可以先相加。

★有理数减法法则: 减去一个数,等于加上这个数的 相反数。 ★有理数减法运算时注意两“变”:①改变运算符号; ②改变减数的 性质符号(变为相反数)

有理数减法运算时注意一个“不变”:被减数与减数的 位置不能变换,也就是说,减法没有交换律。 ★有理数的 加减法混合运算的 步骤:

①写成省略加号的 代数和。在一个算式中,若有减法,应由有理数的 减法法则转化为加法,然后再省略加号和括号; ②利用加法则,加法交换律、结合律简化计算。

(注意:减去一个数等于加上这个数的 相反数,当有减法统一成加法时,减数应变成它本身的 相反数。) ★有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。 ②任何数与0相乘,积仍为0。

★如果两个数互为倒数,则它们的 乘积为1。

…等) ★乘法的 交换律、结合律、分配律在有理数运算中同样适用。

★有理数乘法运算步骤:①先确定积的 符号;

②求出各因数的 绝对值的 积。

★乘积为1的 两个有理数互为倒数。注意: ①零没有倒数 ②求分数的 倒数,就是把分数的 分子分母颠倒位置。一个带分数要先化成假分数。 ③正数的 倒数是正数,负数的 倒数是负数。 ★有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。 ②0除以任何非0的 数都得0。0不可作为除数,否则无意义。

★有理数的 乘方   

★注意:①一个数可以看作是本身的 一次方,如5=51; ②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。 ★乘方的 运算性质: ①正数的 任何次幂都是正数; ②负数的 奇次幂是负数,负数的 偶次幂是正数; ③任何数的 偶数次幂都是非负数; ④1的 任何次幂都得1,0的 任何次幂都得0; ⑤-1的 偶次幂得1;-1的 奇次幂得-1; ⑥在运算过程中,首先要确定幂的 符号,然后再计算幂的 绝对值。 ★有理数混合运算法则:①先算乘方,再算乘除,最后算加减。 ②如果有括号,先算括号里面的 。

★科学记数法:一般地,一个大于10的 数可以表示成a×10n的 形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法.....

★代数式的 概念:

用运算符号(加、减、乘除、乘方、开方等)把数与表示数的 字母连接而成的 式子叫做代数式...。单独的 一个数或一个字母也是代数式。 注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;

②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式; ③代数式中的 字母所表示的 数必须要使这个代数式有意义,是实际问题的 要符合实际问题的 意义。

★代数式的 书写格式: ①代数式中出现乘号,通常省略不写,如vt; ②数字与字母相乘时,数字应写在字母前面,如4a;

③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘, a; ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

⑤在代数式中出现除法运算时,一般按照分数的 写法来写,如4÷(a-4)应写作4

线具有“÷”号和括号的 双重作用。 ⑥在表示和(或)差的 代差的 代数式后有单位名称的 ,则必须把代数式括起来,再将单位名称写

在式子的 后面,如(a2b2)平方米

★代数式的 系数:

代数式中的 数字中的 数字因数叫做代数式...的. 系数..。如3x,4y的 系数分别为3,4。 注意:①单个字母的 系数是1,如a的 系数是1; ②只含字母因数的 代数式的 系数是1或-1,如-ab的 系数是-1。a3b的 系数是1 ★代数式的 项:

代数式6x22x7表示6x2、-2x、-7的 和,6x2、-2x、-7是它的 项,其中把不含字母的 项叫做常数项

注意:在交待某一项时,应与前面的 符号一起交待。 ★同类项:

所含字母相同,并且相同字母的 指数也相同的 项叫做同类项。

注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的 指数也相同。这两个条件缺一不可;

②同类项与系数无关,与字母的 排列顺序无关; ③几个常数项也是同类项。 ★合差同类项:

把代数式中的 同类项合并成一项,叫做合并同类项。 ①合并同类项的 理论根据是逆用乘法分配律; ②合并同类项的 法则是把同类项的 系数相加,所得结果作为系数,字母和字母的 指数不变。 注意: ①如果两个同类项的 系数互为相反数,合并同类项后结果为0; ②不是同类项的 不能合并,不能合并的 项,在每步运算中都要写上; ③只要不再有同类项,就是最后结果,结果还是代数式。 ★根据去括号法则去括号:

括号前面是“+”号,把括号和它前面的 “+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。 ★根据分配律去括号:

括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的 分配律用+1或-1去乘括号里的 每一项以达到去括号的 目的 。 ★注意: ①去括号时,要连同括号前面的 符号一起去掉; ②去括号时,首先要弄清楚括号前是“+”号还是“-”号; ③改变符号时,各项都变号;不改变符号时,各项都不变号。

一. 线段、射线、直线

折线统计图:能够清晰地反映同一事物在不同时期的 变化情况。

条形统计图:能够清晰地反映每个项目的 具体数目及之间的 大小关系。

扇形统计图:能够清晰地表示各部分在总体中所占的 百分比及各部分之间的 大小关系 统计图对统计的 作用:

(1)可以清晰有效地表达数据。 (2)可以对数据进行分析。 (3)可以获得许多的 信息。

(4)可以帮助人们作出合理的 决策。

★2. 二.1. 2. 3. 三.1. 角2. ②③④方程..

一. 整式 ★1. 单项式

①由数与字母的 积组成的 代数式叫做单项式。单独一个数或字母也是单项式。

②单项式的 系数是这个单项式的 数字因数,作为单项式的 系数,必须连同数字前面的 性质符号,如果一个单项式只是字母的 积,并非没有系数.

③一个单项式中,所有字母的 指数和叫做这个单项式的 次数. ★2.多项式

①几个单项式的 和叫做多项式.在多项式中,每个单项式叫做多项式的 项.其中,不含字母的 项叫做常数项.一个多项式中,次数最高项的 次数,叫做这个多项式的 次数.

②单项式和多项式都有次数,含有字母的 单项式有系数,多项式没有系数.多项式的 每一项都是单项式,一个多项式的 项数就是这个多项式作为加数的 单项式的 个数.多项式中每一项都有它们各自的 次数,但是它们的 次数不可能都作是为这个多项式的 次数,一个多项式的 次数只有一个,它是所含各项的 次数中最高的 那一项次数.

★3.整式单项式和多项式统称为整式.

代数式整式单项式多项式

其他代数式

二. 整式的 加减

¤1. 整式的 加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.

三. 同底数幂的 乘法

★同底数幂的 乘法法则: am

(m,n都是正数)是幂的 运算中最基本的 法则,在应用法则运算时,

要注意以下几点:

①法则使用的 前提条件是:幂的 底数相同而且是相乘时,底数a可以是一个具体的 数字式字母,也可以是一个单项或多项式;

②指数是1时,不要误以为没有指数;

③不要将同底数幂的 乘法与整式的 加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

④当三个或三个以上同底数幂相乘时,法则可推广为am

(其中m、n、p均为正数);

⑤公式还可以逆用:a

四.幂的 乘方与积的 乘方 ★1. 幂的 乘方法则:(am)n

★2. (am)n(an)mamn(m,n都为正数).

★3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,

★5.要注意区别(ab)n与(a+b)n意义是不同的 ,不要误以为(a+b)n=an+bn(a、b均不为零)。

★6.积的 乘方法则:积的 乘方,等于把积每一个因式分别乘方,再把所得的 幂相乘,即(ab)nanbn(n为正整数)。

★7.幂的 乘方与积乘方法则均可逆向运用。 五. 同底数幂的 除法

★1. 同底数幂的 除法法则:同底数幂相除,底数不变,指数相减,即am

★2. 在应用时需要注意以下几点:

①法则使用的 前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的 数的 0次幂等于1,即a01(a0),如100

1,(-2.50=1),则00无意义. ③任何不等于0的 数的 -p次幂(p是正整数),等于这个数的 p的 次幂的 倒数,即a

p( a≠0,p是正整数), 而0-1,0-3都是无意义的 ;当a>0时,a-p的 值一定是正的 ; 当a<0时,a-p的 值可能是正也可能是负的 ,如(-2)

④运算要注意运算顺序. 六. 整式的 乘法

★1. 单项式乘法法则:单项式相乘,把它们的 系数、相同字母分别相乘,对于只在一个单项式里含有的 字母,连同它的 指数作为积的 一个因式。 单项式乘法法则在运用时要注意以下几点:

①积的 系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的 错误的 是,将系数相乘与指数相加混淆;

②相同字母相乘,运用同底数的 乘法法则;

③只在一个单项式里含有的 字母,要连同它的 指数作为积的 一个因式; ④单项式乘法法则对于三个以上的 单项式相乘同样适用; ⑤单项式乘以单项式,结果仍是一个单项式。 ★2.单项式与多项式相乘

单项式乘以多项式,是通过乘法对加法的 分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的 每一项,再把所得的 积相加。 单项式与多项式相乘时要注意以下几点:

①单项式与多项式相乘,积是一个多项式,其项数与多项式的 项数相同; ②运算时要注意积的 符号,多项式的 每一项都包括它前面的 符号;

③在混合运算时,要注意运算顺序。 ★3.多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的 每一项乘以另一个多项式的 每一项,再把所得的 积相加。 多项式与多项式相乘时要注意以下几点:

①多项式与多项式相乘要防止漏项,检查的 方法是:在没有合并同类项之前,积的 项数应等于原两个多项式项数的 积;

②多项式相乘的 结果应注意合并同类项;

③对含有同一个字母的 一次项系数是1的 两个一次二项式相乘

更多相关阅读

最新发布的文章