广东高考数学全称量词与存在性量词知识点
自从全称量词与存在性量词内容引入数学课程中后,高考考试时就时常会考到相关的知识点,下面是小编给大家带来的广东高考数学全称量词与存在性量词知识点,希望对你有帮助。
高考数学全称量词与存在性量词知识点(一)
1、全称量词与全称命题:
①全称量词:短语“对所有的”,“对任意的”在陈述中表示整体或全部的含义,逻辑中通常叫做全称量词,并用符号“
”表示;
②全称命题:含有全称量词的命题,叫做全称命题
③全称命题的格式:“对M中任意一个x,有p(x)成立”的命题,记为?x∈M,p(x),读作“对任意x属于M,有p(x)成立”。
2、存在量词与特称命题:
①存在量词:短语“存在一个”,“至少有一个”在陈述中表示个别或者一部分的含义,在逻辑中通常叫做存在量词,并用符号“
”表示。
②特称命题:含有存在量词的命题,叫做特称命题;
③“存在M中的一个x0,使p(x0)成立”的命题,记为?x0∈M,p(x0),读作“存在一个x0属于M,使p(x0)成立”。
3、全称命题的否定:
一般地,对于含有一个量词的全称命题的否定,有下面的结论:
全称命题p:
,它的否命题
4、特称命题的否定:
一般地,对于含有一个量词的特称命题的否定,有下面的结论:
特称命题p:
,其否定命题
高考数学全称量词与存在性量词知识点(二)
重难点:通过生活和数学中丰富实例,理解全称量词与存在量词的意义地利用;能准确全称量词与存在量词的意义.
考纲要求:①理解全称量词与存在量词的意义.
②能正确地对含有一个量词的命题进行否定.
经典例题:判断下列命题是全称命题还是存在性命题.
(1)线段的垂直平分线上的点到这条线段两个端点的距离相等; (2)负数的平方是正数;
(3)有些三角形不是等腰三角形; (4)有些菱形是正方形.
当堂练习:
1.对于命题“任何实数的平方都是非负的”,下列叙述正确的是 ( )
A.是全称命题 B.是存在性命题
C.是假命题 D.是“若p则q”形式的命题
2.命题“原函数与反函数的图象关于y=x对称”的否定是()
A原函数与反函数的图象关于y=-x对称
B原函数不与反函数的图象关于y=x对称
C存在一个原函数与反函数的图象不关于y=x对称
D存在原函数与反函数的图象关于y=x对称
3.下列全称命题中,真命题是 ( )
A.所有的素数是奇数 B.
, (x-1)2>0
C.
, x+≥2 D.
, sinx+≥2
4.下列存在性命题中,假命题是 ( )
A.
,
B.至少有一个x∈Z.x能被2和3整除
C.存在两个相交平面垂直于同一个直线 D.
是无理数}.x2是有理数