产生视差的原因_产生视差的思路分析

2017-06-01

视差是指眼睛在目镜端上下移动,所看见的目标有移动。那么产生视差的原因有什么呢?下面是小编精心为你整理的产生视差的原因,一起来看看。

产生视差的原因

原因是物像与十字丝分划板不共面。消除方法是同时仔细调节目镜调焦螺旋和物镜调焦螺旋。

由于物镜调焦不完善,导致目标实像与十字丝平面不完全重合出现相对移动现象,称为视差。其原因由于物镜调焦不完善,使目标实像不完全成像在十字丝平面上;在目镜端观测者眼睛略作上下少量移动,如发现目标也随之相对移动,即表示有视差存在;再仔细进行物镜调焦,直至成像稳定清晰。

产生视差的思路分析

视差法

观测者在两个不同位置看同一天体的方向之差。可用观测者的两个不同位置之间的距离(基线)在天体处 的张角来表示。天体的视差与天体到观测者的距离之间存在着简单的三角关系,因此能以视差的值表示天体的距离,而以此测定天体距离的方法称为三角视差法。在测定太阳系内天体的距离时,以地球半径为基线,所得视差称为周日视差。周日视差随着天体的高度变化而改变,当天体位于地平时,它的周日视差达到极大值,称为周日地平视差。当观测者位于赤道时,天体的周日地平视差具有最大值,称为赤道地平视差。在测定恒星的距离时,以地球绕太阳公转的轨道半长径(即太阳和地球的平均距离)为基线,所得视差称为周年视差。假设恒星位于黄极方向时的周年视差称为恒星周年视差,简称恒星视差,用π表示。恒星视差只与恒星至太阳的距离有关,所以通常用π表示恒星距离。所有恒星的π值都小于1〃。由于太阳在空间运动所产生的视差称为长期视差,也称视差动。它取太阳在一年里所走过的距离为基线。

解题过程

人们常常用“天文数字”来形容数字的巨大,事实也确实如此:日-地距离是149597 870千米,仙女座星 系距离我们236万光年,整个宇宙的尺度大约是1500y光年(大约合94608ykm)。 这些硕大无朋的数字是什么得出的?天文学家用的是什么尺子?窗口望去我可以判断大街上的行人距离我多远,这依靠的是周围的参照物和生活常识,要测量旗杆的高度可以把它放倒然后用尺子量。然而对于天文学家来说,这些方法全都是遥不可及——的确是遥不可及,天文学家的工作就是研究那些遥不可及的天体。那么,天文学家是如何测量距离的呢? 从地球出发 首先来说说视差。什么是视差呢?视差就是观测者在两个不同位置看到同一天体的 方向之差。我们来做个简单的实验:伸出你的右手拇指,交替闭合和睁开双眼,你会 发现拇指向对于背景左右移动。这就是视差。在工程上人们常用三角视差法测量距离 。如图,如果我们测量出∠α、∠β和两角夹边a(称作基线), 那么这个三角形就 可以被完全确定。

天体的测量也可以用三角视差法。它的关键是找到合适的边长a——因为天体的距 离通常是很大的——以及精确测量角度。 我们知道,地球绕太阳作周年运动,这恰巧满足了三角视差法的条件:较长的基 线和两个不同的观测位置。试想地球在轨道的这一侧和另一侧,观测者可以察觉到恒 星方向的变化——也就是恒星对日-地距离的张角θ(如图)。图中所示的是周年视 差的定义。通过简单的三角学关系可以得出:r=a/sinθ 由于恒星的周年视差通常小于1°,所以(使用弧度制)sinθ≈θ。如果我们用角 秒表示恒星的周年视差的话,那么恒星的距离r=206 265a/θ。 通常,天文学家把日-地距离a称作一个天文单位(A.U.)。只要测量出恒星的周 年视差,那么它们的距离也就确定了。当然, 周年视差不一定好测。 第谷一辈子也 没有观测的恒星的周年视差——那是受当时的观测条件的限制。 天文单位其实是很小的距离,是天文学家又提出了秒差距(pc)的概念。也就是说,如果恒星的周年视差是1角秒(1/3600秒),那么它就距离我 们1秒差距。很显然,1秒差距大约就是206265天文单位。 遗憾的是,我们不可能把周年视差观测的相当精确。现代天文学使用三角视差法 大约可以精确的测量几百秒差距内的天体,再远,就只好望洋兴叹了。

星等的关系

星等是表示天体相对亮度的数值。我们直接观测到的星等称为视星等,如果把恒 星统一放到10秒差距的地方,这时我们测量到的视星等就叫做绝对星等。视星等(m) 和绝对星等(M)有一个简单的关系: 5lg r=m-M+5 这就意味着,如果我们能够知道一颗恒星的视星等(m) 和绝对星等(M),那么 我们就可以计算出它的距离(r)。不消说,视星等很好测量,那么绝对星等呢?很幸 运,通过对恒星光谱的分析我 们可以得出该恒星的绝对星等。这样一来,距离就测出 来了。通常这被称作分光视差法。 绝对星等是很有用的。天文学家通常有很多方法来确定绝对星等。 比如主星序重叠法。如果我们认为所有的主序星都具有相同的性质。那么相同光谱 型的恒星就有相同的绝对星等。如果对照太阳附近恒星的赫罗图,我们就可以求出遥

远恒星的绝对星等,进而求出距离。 造父变星是一种性质非常奇特的恒星。所谓变星是指光度周期性变化的恒星。造父变星的独特之处就在于它的光变周期和绝对星等有一个特定的关系(称为周光关系 )。通过观测光变周期就可以得出造父变星的绝对星等。有了绝对星等,一切也就好 说了 造父变星有两种:经典造父变星和室女座W型造父变星, 它们有不同的周光关系 。天琴座的RR型变星也具有特定的周光关系,因此也可以用来测定距离。这种使用变 星测距的方法大致可以测量108秒差距的恒星。

向红端移动

人们观测到,更加遥远的恒星的光谱都有红移的现象,也就是说,恒星的光谱整个向红端移动。造成这种现象的原因是:遥远的恒星正在快速的离开我们。根据多普勒效应可以知道,离我们而去的物体发出的光的频率会变低。

1929年,哈勃(Hubble,E.P.)提出了著名的哈勃定律,即河外星系的视向退行 速度和距离成正比:v=HD.这样,通过红移量我们可以知道星体的推行速度,如果哈勃常数H确定,那么距离也就确定了(事实上,哈勃太空望远镜的一项主要任务就是确定 哈勃常数H)。 这样,我们就可以测量到这个可观测宇宙的边缘了。

回到地球

不过还是有一个问题,这种天文学的测量如同一级一级的金字塔,那么金字塔的地基——天文单位到底是多少呢?如果测量不出天文单位,其他的测量就都成了空中楼阁 天文单位的确是天文测量的基石。20世纪60年代以前,天文单位也是用三角测量法 测出的,在这之后,科学家使用雷达测量日-地距离。 雷达回波可以很准确的告诉我们太阳里我们有多远,这样一来,天文学家就可以大 胆的测量遥远的星辰了。

更多相关阅读

最新发布的文章