八年级数学期中复习要点
教师们要如何准备好复习知识点呢?接下来是小编为大家带来的八年级数学期中复习要点,供大家参考。
八年级数学期中复习要点:
1.二次根式:一般地,式子
叫做二次根式。
注意:(1)若这个条件不成立,则不是二次根式;
(2)是一个重要的非负数,即:≥0。
2.重要公式:
(1);
(2)
3.积的算术平方根:,积的算术平方根等于积中各因式的算术平方根的积;
注意:本章中的公式,对字母的取值范围一般都有要求。
4.二次根式的乘法法则:
5.二次根式比较大小的方法:
6.商的算术平方根:
商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
7.二次根式的除法法则:
分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
8.常用分母有理化因式:与,与,与它们也叫互为有理化因式。
9.最简二次根式:
(1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式是整式,② 被开方数中不含能开的尽的因数或因式;
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;
(4)二次根式计算的最后结果必须化为最简二次根式。
10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题。
11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。
12.二次根式的混合运算:
(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;
(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。
因式分解知识点:
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。