大一经济数学论文
经济学的自然科学化在诺贝尔奖正式设立经济学奖之后,经济学论文中充斥着各种新奇的数学公式,让人第一眼难以分辨究竟是物理论文还是经济论文。下面是小编为大家推荐的大一经济数学论文,供大家参考。
大一经济数学论文范文一:经济类高等数学分层教学的实践研究
摘要:高等数学是经济类本科生一门重要的基础课程,对掌握好其专业课程知识和从事本专业更高层次的研究起着关键作用。为使该专业学生学好这门课程,我校对高等数学的教学试行了分层教学的教学模式。本文从分层的必要性、分层方式以及取得的效果等方面分析阐述了实行分层教学的优势。
关键词:高等数学;分层教学;因材施教
一、分层教学实施的必要性
高等数学是大学本科经济类专业学生的一门重要的基础课程,其重要性体现在学好这门课程不仅是学好其专业课的基本保障,更是提高思维素质的方式和进行更高层次研究的不可缺少的工具。因此,一般的本科院校对经济类的学生从一年级开学就开始开设高等数学课程。然而,高等学校扩大招生后,我国的高等教育已经从精英教育发展到大众教育阶段,使得高校各专业入学人数在激增的同时,生源质量下降已是不争的事实。而且学生来自全国各个省市地区,入学的数学成绩、水平参差不齐;不同学生的兴趣、爱好及发展方向各不相同。而相同专业所使用的教材、教学计划、教学大纲都是一样的,学生和教师基本没有选择的余地。这种统一的教学模式严重阻碍了高等数学
教学质量的进一步提高。目前,这一课程的教学面临的最大问题是学生的学习兴趣和学习成绩的下降。而造成这一问题的因素是多方面的,其中一个重要的原因是忽视学生对教学方法、教学内容的不同需求。因此,根据学生的数学成绩、兴趣爱好、发展志向在适当尊重个人意愿的前提下对学生实施不同要求,不同方式的教学方式,就势在必行。本文以科学理论为基础,结合本校的教学实践,分析论述了分层教学的实施方法和取得的成果。
二、分层教学的理论基础
分层教学的理论基础是美国心理学、教育学家布鲁姆
(B.S.Bloom)“掌握学习”理论。布鲁姆认为:“只要在提供恰当的材料和进行教学的同时,给每个学生提供适度的帮助和充分的时间,几乎所有的学生都能完成学习任务或达到规定的学习目
标。”“掌握学习”理论要求教师的教学“应根据学生的实际发展水平、学习方式和个性特点来进行”。而一般高校的生源来自全国各个省市地区,近年来的高校扩招也造成了生源质量的下降。这就造成了学生的数学水平参差不齐,差异较大,而分层教学可以较好得体现上述思想。分层教学法还以多元智力理论为基础,尊重学生的个性差异,重视个性发展,遵循因材施教的原则,以学生的发展作为教学的出发点和归宿,真正体现“以学生发展为中心,以社会需要为方向,以学科知识为基础”的教育改革要求,也能真正体现素质教育的精神内涵。另外,其实在我国古代,教育家、思想家孔子就已经提出育人要“深其深,浅其浅,益其益,尊其尊”,即主张“因材施教,因人而异”。也就是说,教师的“教”,一定要适合学生的“学”。
三、分层教学的实施
分层教学,就是针对学生不同的学习水平和能力,以及学生自身对数学的兴趣爱好程度和要求有区别地制定学习目标,设计课程内容,创设不同的教学情境和教授方式,从而进行有针对性的因材施教,促进学生得到全面的锻炼和发展,进而实现更高效率,更好效果的教学模式。从2008学年开始,在我校教务处的大力支持下,我们在经济类专业的高等数学教学中试行了分层教学模式,和以往的不分层相比,两年来教学效果取得了显著的提高。具体实施方法是,对于经济类专业的两个学院,经济贸易学院和工商管理学院,我们采取不打乱院系,但是分层也分班的方式。层次分为两层,即A层和B层。A层是基本知识掌握、理论灵活运用、理论联系实际等方面要求较高的层次,教学计划和内容以考研和在专业领域进行深入研究为目标;B层相应要求较低,但是以打下扎实基础,使数学成为后继专业课学习的有力工具为基本原则。同时,由于A层班级的较高要求不易把握,由具有多年教学经验的教师担任授课工作。分层的依据有客观依据和主观依据。客观依据是学生的数学成绩水平,一方面参考高考成绩,另一方面,在新生入学伊始,进行一次数学“摸底”考试。“摸底”考试的试题由教学经验丰富的教师来出,大部分是一般难度的题目,但有少数较难题,由此可看出学生的数学成绩高下。分层的主观依据即是学生自己对数学课程的兴趣深浅程度和要求高低。比如,有的学生虽然成绩一般,但是对数学很感兴趣,或者有考研等在本专业领域继续研究的意向,我们可以考虑将该生分A层班级听课。反之,有的学生考试成绩虽高,但是对数学兴趣不大,只是当做一门必修基础课程来修,那么,就可以征求该生的意见,将其分在B层班级上课。考虑到班级人数和授课效果,我们采取相当三个“自然班”的人数为一个授课班。分层教学的根本目的是因材施教,因此,第一学期期末考试结束后,一些学生的数学成绩、对数学的兴趣态度等可能已经不再适合原来的班级教学目标,这就需要对班级进行调整,也就是说,分层教学具有一定的流动性。调整时也遵循上述分层依据,因为调整也是再一次分层。一方面是学生的试卷成绩,另外兼顾学生的主观意愿。但是实践证明,波动不宜过大,以不超过5%为宜。
四、分层教学的成效与思考
分层教学取得了一定的成效,较之08级以前不实施分层教学的学生成绩,不及格率有了较大幅度的降低。60-69,70-79分数段的人数有显著增加,而90分以上的优秀率有小幅增加,平均分明显提高。成绩分布呈正态分布。由此可见,分层教学符合大多数学生的愿望和要求,应当坚持和完善。分层教学有的放矢,因材施教,可以提高学生的学习兴趣,降低因学科本身的抽象枯燥造成的负担。使一些对数学没有信心,失去学习兴趣的学生达到了大纲的要求,较好解决了大学生数学学习两级分化太大的矛盾。08级以后的学生对分层次教学的认可度越来越高,适应数学学习的能力和学习数学的信心也大大地增强。实践证明,分层教学保证了面向全体学生,因材施教,做到了“优等生吃得饱,中等生吃得好,差等生吃得了”,同时,减轻了学生的课业负担,是全面提高教学质量和实施素质教育的行之有效的途径。虽然分层教学的实施使高等数学教学各方面有了大的改进,但是还有一些问题亟待解决。比如不同“自然班”的学生在同一个授课班上数学课,这就给课堂和作业管理造成了一定的难度,对教师和辅导员提出了新的要求。另外,考试过后需要将学生成绩按“自然班”排名,也造成了一些麻烦。我们的工作还仅仅是一个开始,今后将在实践中不断完善分层教学的教学方式,比如,在考核学生成绩方面,可以考虑不仅依据笔试的卷面成绩,再兼顾其它形式的考核成绩;在教学过程中,可适当借助计算机进行多媒体教学,以提高学生的学习兴趣。
参考文献:
[1]阳妮.大学数学分层教学的理性思考[J].高教论坛,2007.
(5):87-89.
[2]郑兆顺.新课程中学数学教学法的理论与实践[M].北京:国防工业出版社,2006.
[3]郭德俊,李原.合作学习的理论与方法[J].高等师范教育研究,1994,(3):43-54.
[4]付海峰.在层次教学中培养学生的思维能力[J].中学数学参考,1997,(10).
大一经济数学论文范文二:微分方程的基本应用
微分方程是数学的重要分支, 用微分方程来刻画许多自然科学、经济科学甚至社会科学领域中的一些规律,这是微分方程应用的重要领域,也是其发展的动力.在这里我重点介绍了几个利用微分方程常来解决的问题的例子,从中我们可以了解到微分方程用的广泛性以及解决具体问题时常采用的一般步骤.
微分方程是与微积分一起形成发展起来的重要数学分支,已有悠久的历史,早在17~18世纪,牛顿、莱布尼兹、贝努里和拉格朗日等人在研究力学和几何学中就提出了微分方程【1,2】.随着科学的发展,它在力学、电学、天文学和其他数学物理领域内的应用不断获得成功,有力地推动了这些学科的发展,已成为研究自然科学和社会科学的一个强有力工具.如今,微分方程仍继续保持着进一步发展的活力,其主要原因是它的根源深扎在各种实际问题之中,许多实际问题可以通过建立微分方程模型得以解决.
常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的. 数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具.
微分方程可以精确地表述事物变化所遵循的基本规律. 随着微分方程的理论的逐步完善,只要列出相应的微分方程并找到解方程的方法, 微分方程也就成了最有生命力的数学分支. 事实上,大部分的常微分方程求不出十分精确的解,而只能得到近似解. 当然,这个近似解的精确程度是比较高的.
现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等. 这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题. 应该说,应用常微分方程理论已经取得了很大的成就. 解常微分方程大致有分离变量法、变量替换法、常数变易法以及积分因子法等等,其中,积分因子法尤为重要,本论文主要讨论积分因子存在条件及其解法,通过积分因子使常微分方程化为全微分方程形式来求解.
微分方程在科学技术和实际生活中都有着广泛的应用。应用微分方程解决实际问题,其实就是建立微分方程数学模型,通过建立微分方程、确定定解条件、求解及对解的分析可以揭示许多自然界和科学技术中的规律.应用微分方程解决具体问题的主要步骤:
(1)分析问题,将实际问题抽象,设出未知函数,建立微分方程,并给出合理的定解条件;
(2)求解微分方程的通解及满足定解条件的特解,或由方程讨论解的性质;
(3)由所求得的解或解的性质,回到实际问题,解释该实际问题,得出客观规律. 微分方程的应用举例
几何问题
1.等角轨线
我们来求这样的曲线或曲线族,使得它与某已知曲线族的每一条曲线相交成给定的角度.这样的曲线轨线已知曲线的等角轨线.当所给定的角为直角时,等角轨线就轨线正交轨线.等角轨线在很多学科(如天文,气象等)中都有应用.下面
就来介绍等角轨线的方法.
首先把问题进一步提明确一些.
设在(x,y)平面上,给定一个单参数曲线族(C):x,y,c0求这样的曲线l,使得l与(C)中每一条曲线的交角都是定角 .
设l的方程为y1=y1(x).为了求y1(x),我们先来求出y1(x)所对应满足的微分方程,也就是要求先求得x, y1,y1的关系式.条件告诉我们l与(C)的曲线相交成定角,于是,可以想象,y1和y1必然应当与(C)中的曲线y=y(x)及其切线的斜率y'有一个关系.事实上,当≠
'''时,有 2y1y'
tank ''1yy1
或
y'y1k
ky11''
当=时,有 2
y'1
y1'
'又因为在交点处,y(x)=y1(x),于是,如果我们能求得x, y1,y1的关系
Fx,y,y'0
采用分析法.
设y=y(x)为(C)中任一条曲线,于是存在相应的C,使得
x,yx,c0
因为要求x,y, y1的关系,将上式对x求导,得
'x,yx,cy'x,yx,cy'x0 x'
这样,将上两式联立,即由
x,y,c0 '''x,y,cx,y,cy0yx
消去C,就得到x,yx,y'x所应当满足的关系
Fx,y,y'0
这个关系称为曲线族(C)的微分方程.
于是,等角轨线(≠)的微分方程就是 2
y1'k0 Fx,y1,'1ky1
而正交轨线的微分方程为 1 Fx,y1,'0 y1
为了避免符号的繁琐,以上两个方程可以不用y1,而仍用y,只要我们明确它是所求的等角轨线的方程就行了.
为了求得等角轨线或正交轨线,我们只需求上述两个方程即可. 例1 求直线束ycx的等角轨线和正交轨线.
解 首先求直线束ycx的微分方程.
将ycx对x求导,得y=C,由
ycx 'yc'
消去C,就得到ycx的微分方程
dyy dxx
当≠时,由(2.16)知道,等角轨线的微分方程为 2
dyky dyx1kdx
xdxydyxdyydx k或
及
xdxydy1xdyydx2 222kxyxy
即
ydxdxydy1x 2kx2y2y1x
积分后得到
11ylnx2y2arctanlnc 2kx
或
xyce
如果=221y2x ,由(2.17)可知,正交轨线的微分方程为 2
1y dyx
dx
即 dyx dxy
或 xdxydy0
故正交轨线为同心圆族x2y2c2.