九年级数学上册过三点的圆练习题
九年级数学的学习需要不断的在练习中积累,下面是小编为大家带来的关于九年级数学上册过三点的圆练习题,希望会给大家带来帮助。
九年级数学上册过三点的圆练习题:
1.经过一点的圆有_______个,经过两点的圆有_______ 个。
2.若平面上A、B、C三点所满足的条件是__________。
3.直角三角形的两直角边分别为3cm ,4cm 则这个三角形的外接圆半径是________。
4.下列关于外心的说法正确的是( )
A.外心是三个角的平分线的交点
B.外心是三条高的交点
C.外心是三条中线的交点
D.外心是三边的垂直平分线的交点
5.下列条件中不能确定一个圆的是( )
A.圆心和半径
B.直径
C.三角形的三个顶点
D.平面上的三个已知点
6.三角形的外心具有的性质是( )
A.到三边的距离相等
B.到三个顶点的距离相等
C.外心在三角形外
D.外心在三角形内
7.等腰三角形底边上的中线所在的直线与一腰的垂直平分线的交点是( )
A.重心
B.垂心
C.外心
D.无法确定
8.已知直线l :y=x-2和点A (0,-2 )和点B(2,0),设点P 为l 上一点,试判断过P、A、B三点能否作一个圆。
9.若等腰直角三角形的直角边长为2cm ,则它的外接圆面积为_________.
10.27-3-1为一残破古物,请做出它的圆心
11.如 27-3-2,已知一条直线l和直线l外两定点A、B,且AB在l两旁,则经过A、B两点且圆心在l上面的圆有( )
A.0个
B.1个
C.无数个
D.0个或1个或无数个
12.如27-3-3,A,B,C表示三个工厂,要建一个供水站,使它到这三个工厂的距离相等,求作供水站的位置。
13.经过平面上的任意四点是否一定能作,如果能,四点应满足什么条件?
14.某校计划在校园内修建一座周长为12cm的花坛,同学们设计出证三角形、正方形和圆共三种案,通过计算求出使花坛面积最大的案是哪一种形。
15.如27-3-4,有一个圆形的盖水桶的铁片,部分边沿由于水生锈残缺了一些,很不美观,为了废物利用,将铁片剪去一些使其成为圆形的,应找到圆心,并找到合理的半径,在铁片上画出圆,沿圆剪下即可,问应怎么样找到圆心和半径?
16.对于平面形A,如果存在一个圆,使形A上的任意一点到圆心的距离都大于这个圆的半径,则称形A被这个圆所覆盖。
对于平面形A母如果存在两个或两个以上的圆,使形A上的任意一点到其中某个圆的圆心距离都不大于这个圆的半径,则称形A被这些圆所覆盖。
例如:27-3-5中的三角形被一个圆所覆盖,27-3-6中的四边形被两个圆覆盖。
回答下列问题:
(1)边长为1cm的正方形被一个半径为r的圆所覆盖, 的最小值是________cm 。
(2)边长为1cm的等边三角形被一个半径为r的圆所覆盖,r 的最小值是______cm。
(3)边长为2cm,宽为1cm的距离被两个半径都为r的圆所覆盖,r 的最小值是______cm,这两个圆的圆心距是________cm.
17.边长为2的等边 内接于 ,则圆心O到 一边的距离为________。
18.如果三角形三条边长分别为5,12,13 ,那么这个三角形外接圆半径的长为_____。
19.如27-3-7, 是 的外接圆, ,BC=2 cm ,则 的面积是_______ .
20.已知等腰三角形ABC的底边BC的长为10cm,顶角为 ,求它的外接圆直径。
21.一阵阵“加油”、“加油”的喊声把握引向游泳池边,这里甲、乙、丙、丁四个班级的代表队正在进行班际接力比赛,我来到水花飞溅的池边,遇到了李明、赵刚、王磊等几个同学,我请他们对比赛的结果进行猜测:
李明说:“我看甲班只能取得第三名,丙班才是冠军。”
赵刚说:“丙班只能得个第二名吧,至于第三名,我看是乙班。”
王磊很干脆,他说:“丁班第二,甲班第一。”比赛结束了,我又找到了这几个同学,他们发现,三个人的猜测只对一半,你能推测出比赛的结果吗?
九年级数学上册过三点的圆练习题答案:
1.无数,无数 2.三点不共线 3.2.5cm 4.D 5.D 6.B 7.C
8.解:当x =0 时,y=0-2=-2, 点A在直线l 上,同理点B也在直线l上,即P、A、B在同一直线上, 过P、A、B三点不能作一个圆。
9. 10.略 11.D
12.点拨:连结AB、AC,作线段AB、AC的垂直平分线,垂直平分线的交点即为供水站的位置。
13.不一定能作圆,如果能,其中以四点为顶点的四边形各边的垂直平分线应交于同一点。
14.解:若设计为正三角形,则边长长为 面积为 ,若设计为正方形,则边长为 ,面积为 ,若设计为圆型,则半径为 ,面积为
使花坛面积最大的是圆。
15.作法:(1)在没有残缺的边上任取三点A、B、C;(2)连结AC、AB分别作AC、AB的垂直平分线 和 ,两条直线交于点O;(3)以点O为圆心,以O点到残缺处的最短长度为半径作圆;(4)沿着做出的 剪下即可。
16.(1) r 的最小值应是边长为1cm的正方形外接圆的半径之长,即 ,如(1),(2)r 的最小值应是边长为1cm的等边三角形外接圆的半径之长,即 ,如(2),(3) ,圆心距 =1cm ,如(3)。
17. .18.6.5 19.
20.解:如,连结OA、OB,
。 为等边三角形, 外接圆直径为20cm..
21.李明的前半句话错,一、二、三名分别由丙、丁、乙三个班获得,甲班获得第四名。