高三数学复习等差数列的通项公式
在学习数列时,等差数列的通项公式需要牢记,以防高考数学中需要用到,下面是小编给大家带来的高三数学复习等差数列的通项公式,希望对你有帮助。
高三数学等差数列的通项公式
等差数列公式an=a1+(n-1)d
a1为首项,an为第n项的通项公式,d为公差
前n项和公式为:Sn=na1+n(n-1)d/2
Sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
以上n.m.p.q均为正整数
解析:第n项的值an=首项+(项数-1)×公差
前n项的和Sn=首项×n+项数(项数-1)公差/2
公差d=(an-a1)÷(n-1)
项数=(末项-首项)÷公差+1
数列为奇数项时,前n项的和=中间项×项数
数列为偶数项,求首尾项相加,用它的和除以2
等差中项公式2an+1=an+an+2其中{an}是等差数列
通项公式:公差×项数+首项-公差
高中数学知识点:等差数列求和公式
若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:
S=(a1+an)n÷2
即(首项+末项)×项数÷2
前n项和公式
注意:n是正整数(相当于n个等差中项之和)
等差数列前N项求和,实际就是梯形公式的妙用:
上底为:a1首项,下底为a1+(n-1)d,高为n。
即[a1+a1+(n-1)d]* n/2={a1n+n(n-1)d}/2。
等差数列的通项公式相关练习及答案解析
1.已知等差数列{an}的首项a1=1,公差d=2,则a4等于( )
A.5
B.6
C.7
D.9
答案:C
2.在数列{an}中,若a1=1,an+1=an+2(n≥1),则该数列的通项公式an=( )
A.2n+1 B.2n-1
C.2n D.2(n-1)
答案:B
3.△ABC三个内角A、B、C成等差数列,则B=__________.
解析:∵A、B、C成等差数列,∴2B=A+C.
又A+B+C=180°,∴3B=180°,∴B=60°.
答案:60°
4.在等差数列{an}中,
(1)已知a5=-1,a8=2,求a1与d;
(2)已知a1+a6=12,a4=7,求a9.
解:(1)由题意,知a1+5-1d=-1,a1+8-1d=2.
解得a1=-5,d=1.
(2)由题意,知a1+a1+6-1d=12,a1+4-1d=7.
解得a1=1,d=2.
∴a9=a1+(9-1)d=1+8×2=17.