初中数学二次函数教学反思总结
二次函数是初中数学里很重要的一个知识点,如果可以让学生初步体会二次函数在实际生活中的运用,再次感悟数学源于生活又服务于生活,那学习二次函数就比较容易了。下面是由小编整理的初中数学二次函数教学反思总结,希望对您有用。
初中数学二次函数教学反思总结篇一
在二次函数教学中,根据它在初中数学函数在教学中的地位,细心地准备《二次函数》的教学,教学重点为二次函数的图象性质及应用,教学难点为a、b、c与二次函数的图象的关系。根据反思备课过程和讲课效果,感受颇深,有收获,也有不足。
本章的教学是我对选题有了进一步认识,要体现教学目标,要有实际意义。要体现学生的“最近发展区”,有利于学生分析。如为了帮助学生建立二次函数的概念,从学生非常熟悉的正方形的面积的研究出发,通过建立函数解析式,归纳解析式特点,给出二次函数的定义.建立了二次函数概念后,再通过三个例题的分析和解决,促进学生理解和建构二次函数的概念,在建构概念的过程中,让学生体验从问题出发到列二次函数解析式的过程.体验用函数思想去描述、研究变量之间变化规律的意义.
接下来教学主要从“抛物线的开口方向、对称轴、顶点坐标、增减性”循序渐进,由特殊到一般的学习二次函数的性质,并帮助学生总结性的去记忆。在学习过程中加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练。这部分内容就是中等偏下的学生容易混淆,还需掌握方法,加强记忆,强调必须利用图形去分析。通过教学,让学生对建模思想、图形结合思想及分类讨论思想都有了较清晰的认识,学会了分析问题的初步方法。
本章中二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体,动态的展示了二次函数的平移过程,让学生自己总结规律,很形象,便于记忆。
二次函数 中含有三个字母系数,因此确定其解析式要三个独立的条件,用待定系数法来解.学习确定二次函数的一般式,即 的形式,这方面,学生的学习情况还是比较理想的,但方法没有问题,计算能力还有待加强。
在学习了二次函数的知识后,我们尝试运用于解决三个实际问题.问题1是根据实际问题建立函数解析式并学习如何确定函数的定义域;问题二是根据二次函数的解析式,分析二次函数的性质,并通过画函数图像检验作出的分析和判断是否;问题三是综合应用一次函数、二次函数的知识确定函数的解析式和定义域,并尝试解决销售问题中最大利润的问题;通过这三个问题的分析和解决,让学生初步体会二次函数在实际生活中的运用,再次感悟数学源于生活又服务于生活。虽然有部分学生尚不能熟练解决相关应用问题,但在下面的学习中会得到补充和提高。
但在教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。
总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。
初中数学二次函数教学反思总结篇二
“课内比教学”是教育本质的回归,是提高教师专业素质、促进教师专业成长的重要途径。在此次活动中,我主讲的课题是《二次函数的概念》。通过讲课、评课,我收获颇多。
二次函数是初中阶段研究的最后一个具体的、重要的函数,在历年来的中考中题中都占有较大的分值。二次函数不仅和学生以前学过的一元二次方程有着密切的联系,而且对培养学生“数形结合”的数学思想具有重要作用。而二次函数的概念是以后学习二次函数的基础,在整个教材体系中起着承上启下的作用。
本节课的具体内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决一些问题。为此,我先带领学生复习了什么是一次函数,然后设计具体的问题情境让学生自己“推导” 出一个二次函数,并观察、总结它与一次函数有什么不同。在此基础上,逐步归纳出二次函数的一般解析式:y=ax²+bx+c(a,b,c是常数,a≠ 0)。最后,通过“一题多练”巩固二次函数的概念并解决一些简单的数学问题。
我个人以为,本节课的成功之处有以下几点。一是在教学设计上“步步为营”、学生的思维能力“层层提高”。 在教学设计上,根据内容的发展,我合理设计了具有针对性的问题,借助学生已有的知识背景展开教学,同时,在解决“老”问题的过程中巧妙地“埋设”新问题,环环相扣、引人入胜,充分激发学生的求知欲、调动学生学习的主动性。
二是在总结中不仅注重对知识的梳理和巩固,而且注重提炼出让学生终生受用的思考方法,使学生的思维水平有所提高。这样不仅提高了学生独立发现问题、解决问题的能力,避免学习落入程式化的窠臼,而且也让学生体验到了成功的快乐。
三是学生的能力得到发展。常言道:尺有所短、寸有所长。不同的学生的个体差异,再加上受教学目的等因素的限制,导致一些学有余力的学生会感到“吃不饱”,久而久之就会失去主动思考、主动探究的兴趣。在本节课的最后,我补充的练习题,对这部分学生开阔视野、提高探究能力,都很有好处。
本节课的不足是,一是细节上还有待完善,比如在二次函数的表示上,强调按自变量的降幂排列进行整理还不够突出;再如,课堂放得很开,但有时在该收回的时候收得不够,等等。在今后的教学中,我会特别注意这些方面的问题。
初中数学二次函数教学反思总结篇三
我们已经学习过了正、反比例、一次函数的性质和图像,并且学习过了一元二次方程之后,现在要学习二次函数的图像和性质,从课本和教学大纲的体系来看,二次函数是初中数学的重中重,怎样让学生们学好二次函数?掌握好二次函数的图像和性质?让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。
为此我们三年级数学组把李进有李校长请到数学组里,李校长说要想教好二次函数开始时一定要让学生们动手画图,画不同情况的图形,通过画图让学生观察、理解、掌握所学的内容,并能总结出各个图像的相同点和不同点,通过李校长指点,我们在学习y=a(x-h)2的图像和性质时,首先让同学们开始画y=x2 、y=(x-2)2 、和y=(x+2)2 .通过对比,观察发现它们之间是通过y=x2向左或向右平移得到y=(x-2)2 、和y=(x+2)2 ,但是好多同学对着图形还是不理解加2为什么向左平移??这时我想到李校长说的不要害怕费时间,一定要让同学画图,我又让同学画一组,终于同学们在学习二次函数y=a(x-h)2的图象和二次函数y=ax2的图象的关系时,解决了向左或向右平移引出了加减问题,解决了学生在此容易混淆的难点,让学生结合图象十分明确地看到在x后面如果是加上h就是向左平移h个单位,反之就是向右平移h个单位,其次就是在看如何平移时关键是看顶点的平移,顶点如何平移那么图象就如何平移。先由解析式求出顶点从标,再看平移的问题。
通过本节课的讲解我感到要想教好数学,一定要让同学动起了,既能引起学生兴趣,又能对前面所学的二次函数的知识加深印象,适应学生的最近发展区,今后要及时反思自己教学中存在的不足,在每一节课前充分预想到课堂的每一个细节,想好对应的措施,不断提高自己的教学水平。