小学四年级数学手抄报资料内容

2017-05-13

数学具有严密的逻辑性和抽象的思维性,它的特点决定了它的学科性质——单调、枯燥,如何让学生体会数学的美,动手做手抄报是一种很好的形式。下面小编带给大家的是小学四年级数学手抄报资料内容,希望你们喜欢。

小学四年级数学手抄报欣赏

小学四年级数学手抄报图片1

小学四年级数学手抄报图片2

小学四年级数学手抄报图片3

小学四年级数学手抄报图片4

小学四年级数学手抄报图片5

小学四年级数学手抄报资料内容一:人体的数学化

血压:120/80

胆固醇:180

低密度脂蛋白/高密度脂蛋自:179/47

甘油三酯:189

葡萄糖:80

体温:98.7°F

在今天的医学上,我们作为病人,经受着数字和比率的轰击,它们分析我们的健康,分析我们身体的功能如何。医生们力图确定正常数值的范围。数字和数学看来到处都是。事实上,在我们的身体里,我们的心血管系统网络、被我们的身体用来引发动作的电脉冲、细胞相互联络的方式、我们骨骼的设计、基因的实际分子构造──这一切都具有数学原理。因此,在用数量表示人体功能的努力中,科学和医学就求助于数字和其他数学概念。例如,已经设计出一些仪器,把身体的电脉冲转化成正弦曲线,从而使输出得以比较。从心电图、肌电图、超声波诊断结果上显示出来的是曲线的形状、振幅和相移。所有这些对于受过训练的技术人员都是资料。数字、比率和坐标图是数学适用于我们身体的一些方面。让我们考察另外一些数学概念,看看它们是怎样与身体相联系的。

如果你认为把密码和玛雅象形文字译解出来是富有刺激性和挑战性的,你可以想像自己能解开被身体用于通信的分子密码。目前科学已经发现白血球与大脑相联系。身心之间通过许多生物化学制品的总汇互相联络。译解这些细胞间的通信密码,将对医学产生惊人的影响,正像我们增加了对遗传密码的了解,正在揭示健康领域的许多细节一样。DNA中双螺旋线的发现是另一个数学现象。但是螺旋线并不是存在于人体中的唯一的螺线。等角螺线存在于许多关于生物生长的领域──可能因为它的形状不随生长而改变。你可以在你头上的头发、你身上的骨头、内耳的耳蜗、脐带,甚或你的指纹印迹的生长模式中找寻等角螺线。

身体的物理学和物理性质也导致其他数学概念。身体是对称的,这有助于使它获得平衡和重心。脊柱的三条曲线除了实现平衡外,在健康方面和使身体获得体力以抬起自己的体重及其他负载方面都很重要。艺术家们例如伦纳多?达?芬奇和阿尔布雷希特?丢勒都试图表明身体符合各种不同的比例和量度,例如黄金分割。

听起来可能令人惊讶的是,混沌理论在人体中也有它的位置。例如,在心律不齐的领域,正在研究混沌理论。对于心搏以及使某些人的心搏不正常的原因的研究说明,心搏看来是符合混沌概念的。此外,脑和脑波的功能以及脑失调的治疗也与混沌理论有关。

在分子层次上研究人体,我们发现了数学的迹象。在侵入人体的各种病毒的形状和形式中,存在着几何形状,例如各种多面体和网格球顶结构。在艾滋病病毒(HTLV-1)中,发现了二十面体对称和一个网格球顶结构。DNA构形中的纽结点已经促使科学家们用纽结理论中的数学发现去研究由DNA链所形成的环和纽结。纽结理论中的发现和来自各种不同几何学的概念已经被证明为遗传工程研究中的无价之宝。

科学研究与数学的结合,对于发现人体奥秘和分析人体功能来说,是必要的。

小学四年级数学手抄报资料内容二:巧分乳酪

乔记餐馆虽说吃食不算最好,但却以美味乳酪而远近闻名。块块乳酪状如圆盘,绕有风趣。一刀下去,就把一块乳酪一切为二。连切两刀,不难将其分成四块,三刀则切成六块。一天,女招待罗西请乔把乳酪切成八块。乔:“好,罗西。很简单,我只要这样切四刀就成了。罗西把切好的乳酪往桌子上送时,忽然悟到乔只需要切三刀便可以把乳酪分成八块。罗西想出了什么妙主意?

罗西豁然开朗,悟到圆柱形乳酪是一个立体图形,可以在中线处横截一刀将其一切为二。如果允许移动切开的部分,那么连切三刀也行。可以把第一次切开的两块迭放在一起,切第二刀成四块,再把四块跌放在一起,最后一刀切成八块。罗西的解法是如此简单,几乎可以说是平凡的。然而它给人以明确的启示:对于有意义的切分问题,可以用有限差分演算进行研究并用数学归纳法加以证明。有限差分演算是发现数字序列普通项公式的有力工具。今天,数字序列日益引起人们的兴趣,因为它具有极其广泛的实际应用范围,还因为计算机能够以极快的速度执行序列的运算。

罗西第一次切乳酪的方法是在乳酪顶面的若干中线同时切数刀。乳酪具有如同薄饼那样平坦的顶面。让我们来观察一下,根据在一张薄饼上切数刀的过程,能够生成一些什么数字序列。假如沿着薄饼若干中线同时切数刀,显然,同时切n刀至多可以切出2n块。

若在其边沿为一条简单闭合曲线的任意平面上同时切下n刀,这种方法所切成的块数,是否最多也是2n块呢?否。可以随意画出许多既非凸面,并且形状各异的平面,即使一刀也可切成你所希望的块数。能否画出一种图形,仅切一刀便可以切出任何有限数目的全等的块?若能办到,这种图形的周长应具有什么特性,才能确保只需要一刀便可以切成全等的n块?若不同时进行切分,薄饼的切分将更为有趣。你很快会发现:仅当n〉=3时,切n刀方可切成不止2n块。

这里,我们并不考虑所切成的块是否全等或面积相同。当n=1,2,3,4。。。时,可以切成的最多块数分别是2,4,7,11。这一大家所熟悉的序列是根据下列公式求得的:

1+n(n+1)/2

其中,n是所切的刀数。此序列的前10项(n自0开始)是1,2,4,7,11,16,22,29,37,46。。。

请注意,第一行差分是1,2,3,4,5,6,7,8,9。。。第二行差分是1,1,1,1,1,1,1,1,1,。。。

这强烈地暗示着此序列的普通项是一个二次项。

为什么说“强烈暗示”呢?因为虽然可以用有限差分演算找到一个公式,但是并不能保证该公式对于无限序列也成立。这一点尚需证明。在薄饼公式这一例子中,不难通过数学归纳法做出一个简单的证明。

从这点出发,你可以发现大量的引人入胜的研究方向,其中有许多将导致非同寻常的数字序列,公式以及数学归纳法证明。这里有一些问题可供你作为初步尝试。采用下列各种方法,最多可以切成几块?

1。在马蹄形的薄饼上切n刀。

2。在球形或罗西所切的那种圆柱形乳酪上切n刀。

3。用切小圆甜饼的刀在薄饼上切n刀。

4。在状如烛环状(即中心有一个圆孔)的薄饼上切n刀。

5。在油炸圈(圆环)上切n刀。

关于以上这些问题,假设切分是同时进行的,若改成连切方式,并且允许重新安排切开的部分,其答案如何变化?

更多相关阅读

最新发布的文章