2017高一数学期中考试试卷

2017-06-14

数学考试水平要求学生具有良好的数学“双基”、数学能力与数学品质,下面是小编给大家带来的2017高一数学期中考试试卷,希望对你有帮助。

高一数学期中考试试卷

一、选择题(本大题共有12个小题,每小题5分,共60分, 在每小题给出的四选项中只有一项是符合题目要求的。)

1、已知集合 则集合 的非空子集个数为( )个.

A. 15 B. 16 C. 7 D. 8

2、下列函数是偶函数,且在区间 上单调递减的是( )

A. B. C. D.

3、已知幂函数 的图像过点 ,则 ( )

A. B. C. D.

4、三个数 的大小关系是( )

A. B.

C. D.

5、 函数 与 在同一坐标系中的图像只可能是( )

A. B. C. D.

6、在用二分法求方程 的一个近似解时,现在已经将一根锁定在区间 内,则下一步可判定该根所在区间为( )

A. B. C. D.

7、已知函数 和函数 ,则函数 与 的图象关于( )对称

A. 轴 B. 轴 C.直 线 D. 原点

8、已知 是实数集,集合

,则 ( )

A. B.

C. D.

9、某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表所示,请根据以上数据作出分析,这个经营部将销售单价定为( )元时才能获得最大的利润.

销售单价/元 6 7 8 9 10 11 12

日均 销售量/桶 480 440 400 360 320 280 240

A. 10.5 B. 6.5 C. 12.5 D. 11.5

10、已知函数 是定义在R上的偶函数,在 上单调递减,且有 ,则使得 的 的范围为( )

A. B. C. D.

11、给出下列命题:

1)函数 和 是同一个函数;

2)若函数 ,则函数 的单调递减区间是 ;

3)对于函数 , 的图像关于 轴对称 的必要不充分条件;

4)已知函数 ,定义函数 ,则函数 是偶函数且当 时,函数 有四个零点.

其中正确命题的个数有( )个.

A. 1 B. 2 C. 3 D. 4

12、已知函数 是定义在R上的奇函数,当 时 ,若 则实数 的取值范围为( )

A . B. C. D.

二、填空题(本大题共有4个小题,每小题5分,共20分)

13、命题“若 ,则 ”的逆否命题为

14、已知 ,则 =

1 5、已知关于 方程 ( )有两个实数解,则 的取值范围是 。

16、已知函数 的最大值和最小值分别为 和 ,则

三、解答题(本大题共有6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)

17、1)已知 ,求 的值;

2)计算 的值.

18、(1)请你举2个满足“对定义域内任意实数 ,都有 ”的函数的例子;

(2)请你举2个满足“对定义域内任意实数 ,都有 ”的函数的例子;

(3)请你举2个满足“对定义域内任意实数 ,都有 ”的函数的例子。

19、已知函数 ,判断 的单调性并用定义证明.

20、已知函数 在 上是单调递增函数,

1)求实数 的取值范围;

2)当 取1)问中的最大值时,设 是定义在 上的奇函数,当 时,

求 的解析式;

21 、 已知集合

1)求集合 ;

2)若函数 ,求函数 的值域.

22、设函数

1)解方程: ;

2)令 求 的值;

3)若 是实数集 上的奇函数,且 对任意实数 恒成立,求实数 的取值范围.

更多相关阅读

最新发布的文章