高一上册数学单调性与最大小值教案

2017-06-08

数学教师要上好课并取得良好的效果,最关键的步骤就是备好课,其中备好课就是做好教案!为此,下面小编整理了人教版高一上册数学单调性与最大小值教案案以供大家阅读。

人教版高一上册数学单调性与最大小值教案

教学目标

1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.

2.通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.

3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.

重点难点

教学重点:函数单调性的概念、判断及证明.

教学难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性.

教学方法

教师启发讲授,学生 探究学习.

教学手段

计算机、投影仪.

教学过程

创设情境,引入课题

课前布置任务:

(1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.

(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.

课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜举办大型国际体育赛事.

下图是北京市某年8月8日一天24小时内气温随时间变化的曲线图.

图1

引导学生识图,捕捉信息,启发学生思考.

问题:观察图形,能得到什么信息?

预案:(1)当天的最高温度、最低温度以及何时达到;

(2)在某时刻的温度;

(3)某些时段温度升高,某些时段温度降低.

在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.

问题:还能举出生活中其他的数据变化情况吗?

预案:水位高低、燃油价格、股票价格等.

归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.

【设计意图】由生活情境引入新课,激发兴趣.

归纳探索,形成概念

对于自变量变化时,函数值是变大还是变小,初中时同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.

1.借助图象,直观感知

问题1:分别作出函数y=x+2,y=-x+2,y=x2,y=1x的图象,并且观察自变量变化时,函数值有什么变化规律?

图2

预案 :(1)函数y=x+2在整个定义域内y随x的增大而增大;函数y=-x+2在整个定义域内y随x的增大而减小.

(2 )函数y=x2在[0,+∞)上y随x的增大而增大,在(-∞,0)上y随x的增大而减小.

(3)函数y=1x在(0,+∞)上y随x的增大而减小,在(-∞,0)上y随x的增大而减小.

引导学生进行分类描述(增函数、减函数),同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.

问题2:能不能根据自己的理解说说什么是增函数、减函数?

预案:如果函数f(x)在某个区间上随自变量x的增大,y也越来越大,我们说函数f(x)在该区间上为增函数;如果函数f(x)在某个区间上随自变量x的增大,y越来越小,我们说函数f(x)在该区间上为减函数.

教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观认识.

【设计意图】从图象直观感知函数单调性,完成对函数单调性的第一次认识.

2.探究规律,理性认识

问题1:下图是函数y=x+2x(x>0)的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?

图3

学生的困难是难以确定分界点的确切位置.

通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.

【设计意图】使学生体会到用数量大小关系严格表述函数单调性的必要性.

问题2:如何从解析式的角度说明f(x)=x2在[0,+∞)为增函数?

预案:(1)在给定区间内取两个数,例如1和2,因为12<22,所以f(x)=x2在[0,+∞)为增函数.

(2)仿(1),取很多组验证均满足,所以f(x)=x2在[0,+∞)为增函数.

(3)任取x1,x2∈[0,+∞),且x1

更多相关阅读

最新发布的文章