北师大版七年级数学期末测试题
相关话题
在紧张的七年级数学下册期末复习考试期间要注意适当的休息。下面是小编为大家精心整理的北师大版七年级数学期末测试题,仅供参考。
北师大版七年级数学期末试题
一、选择题(本题共36分,每小题3分)
1.不等式组3x-2>4的解集是( )
A.x>2 B.x>3 C. x<3 D. x<2
2.某种流感病毒的直径是0.00 000 008米,用科学记数法表示0.00 000 008为( )
A. B. C. D.
3.若 a>b,则下列结论中正确的是( )
A.4 a<4 b B.a+c>b+c C.a-5-7b
4.下列计算中,正确的是( )
A. B. C. D.
5.下列计算中,正确的是( )
A.(m+2)2=m2+4 B.(3+y)( 3-y)= 9-y2
C.2x(x-1)= 2x2-1 D.(m-3)(m+1)= m2-3
6.如图,AF是∠BAC的平分线,EF∥AC交AB于点E.
若∠1=25°,则 的度数为( )
A.15° B.50°
C.25° D.12.5°
7.下列从左到右的变形正确进行因式分解的是( )
A.(x+5)(x-5)=x2-25 B.x2+x+1=x(x+1)+1
C.-2x2-2xy=-2x(x+y) D.3x+6xy+9xz=3x(2y+9z)
8.下列调查中,适合用普查方法的是( )
A.了解某班学生对“北京精神”的知晓率 B.了解某种奶制品中蛋白质的含量
C.了解北京台《北京新闻》栏目的收视率 D.了解一批科学计算器的使用寿命
9.我市某一周的最高气温统计如下表:
最高气温( ) 25 26 27 28
天 数 1 1 2 3
则这组数据的中位数与众数分别是( )
A.27,28 B.27.5,28 C.28,27 D.26.5,27
10. 如图所示,点 在AC的延长线上,下列条件中能判断 ( )
A.∠3=∠4 B.
C. D.
11.不等式组 无解,则m的取值范围是( )
A.m<1 B.m≥1 C.m≤1 D.m>1
12.关于 , 的二元一次方程组 的解满足 , 则 的取值范围是( )
A. B. C. D.
二、填空题(本题共24分,每小题2分)
13.把方程 写成用含x的代数式表示y的形式,则y= .
14如果一个角等于54°,那么它的余角等于 度.
15.在方程 中,当 时,y= .
16.分解因式 = .
17.我市六月份连续五天的日最高气温(单位: )分别为35,33,37,34,39,则我市这五天的日最高气温的平均值为 .
18.计算 的结果是 .
19.已知 是关于x,y的方程组 的解,那么 的值是 .
20.已知∠1与∠2互补,∠3与∠2互补,∠1=72°,则∠3= 度.
21.如图,直线AB,CD相交于点O,OE⊥AB,O为垂足,∠EOD=26°,
则∠AOC= .
22.若 , ,则 的值是 .
23.若多项式 是完全平方公式,则k= .
24. 右图为手的示意图,在各个手指间标记字母 .
请你按图中箭头所指方向(即 的方式)从 开始数连续的正整数 当字母 第 次出现时( 为正整数),恰好数到的数是_____________(用含 的代数式表示).
三、计算(本题共6分,每小题3分)
1. 2.
四、因式分解(本题共9分,每小题3分)
1. 2. 3. .
五、先化简,再求值(本题5分)
其中 , .
六、解答题(本题共16分,每小题4分)
1.解不等式 ,并把它的解集在数轴上表示出来.
2. 解方程组
3. 解不等式组 并求它的所有整数解.
4.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD于点G,∠1=50,求∠2的度数.
七、在括号中填入适当的理由(本题共7分,每空1分)
已知:如图,∠1=∠2,∠3=∠4. 求证: DF∥BC.
证明:∵∠3=∠4(已知),
∴ ∥ .( )
∴∠2=∠ . ( )
又∵∠1=∠2(已知),
∴∠1=∠ .
∴DF∥BC. ( )
八、解答题(本题5分)
为了解某区2014年八年级学生的体育测试情况,随机抽取了该区若干名八年级学生的测试成绩进行了统计分析,并根据抽取的成绩等级绘制了如下的统计图表(不完整):
图1 图2
请根据以上统计图表提供的信息,解答下列问题:
(1)本次抽查的学生有___________名,成绩为B类的学生人数为_________名,A类成绩所在扇形的圆心角度数为________;
(2)请补全条形统计图;
(3)根据抽样调查结果,请估计该区约5000名八年级学生体育测试成绩为D类的学生人数.
九、列方程组解应用问题解答题(本题5分)
如图,用火柴棍连续搭建三角形和正方形,公共边只用一根火柴棍. 如果搭建三角形和正方形共用了77根火柴棍,并且三角形形的个数比正方形的个数少5个,那么一共能连续搭建三角形、正方形各多少个?
十、解答题(本题7分)
如图,已知射线CB∥OA,∠C=∠OAB=120°,E、F在CB上,且满足∠FOB=∠FBO,OE平分∠COF.
(1) 求∠EOB的度数;
(2) 若向右平行移动AB,其它条件不变,那么∠OBC:∠OFC的值是否发生变化?若变化,找出其中规律,若不变,求出这个比值;
(3) 在向右平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,请直接写出∠OBA度数,若不存在,说明理由.
北师大版七年级数学期末测试题参考答案
一、选择题(本题共36分,每小题3分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 A C B A B C C A A D B D
二、填空题(本题共24分,每小题2分)
题号 13 14 15 16 17 18
答案 36 35.6
题号 19 20 21 22 23 24
答案 2 72 64° 26 -3或5
六、解答题(本题共16分,每小题4分)
4.解:∵AB∥CD(已知),
∴∠1+∠BEF=180°.(两直线平行,同旁内角互补)………………………1分
又∵∠1=50°(已知),
∴∠EFB=130°. ……………………………2分
∵EG平分∠BEF
∴∠BEG= ∠BEF=65°.(角平分线定义) …3分
∵AB∥CD(已知),
∴∠2 =∠BEG=65°.(两直线平行,内错角相等)……4分
七、在括号中填入适当的理由(本题共7分,每空1分)
证明:GH ∥ AB .(内错角相等,两直线平行)
∠B . (两直线平行,同位角相等)
∠B .
(同位角相等,两直线平行)
八、解答题(本题5分)
解:(1)本次抽查的学生有200名;成绩为B类的学生人数为100名,A类成绩所在扇形的圆心角度数为108º; . ……………………….3分
(2)补全图形正确……………………….4分
(3)该区约5000名八年级学生实验成绩为D类的学生约为250人.……….5分
九、解答题(本题5分)
(1)解:设一共能连续搭建三角形、正方形分别为x,y个,根据题意得
…………………………………………………………………3分
解这个方程组得 …………………………………………………………………2分
答:一共能连续搭建三角形、正方形分别为12,17个.
十、解答题(本题7分)
解:(1)∵CB∥OA,∠C=∠OAB=120°,
∴∠COA=180°-∠C=180°-120°=60°,…………………………………………1分
∵CB∥OA,
∴∠FBO=∠AOB,………………………………………………………………2分
又∵∠FOB=∠FBO,
∴∠AOB=∠FOB,
又∵OE平分∠COF,
∴∠EOB=∠EOF+∠FOB= ∠COA=30°;…………………………………3分
(2)不变.
∵CB∥OA,
∴∠OBC=∠BOA,∠OFC=∠FOA,…………………………………………4分
∴∠OBC:∠OFC=∠AOB:∠FOA,
又∵∠FOA=∠FOB+∠AOB=2∠AOB,
∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2,…………5分
(3)存在,∠OEC=∠OBA=45°.…………………………………………7分
说明:
1.各题若只有结果无过程只给1分;结果不正确按步骤给分。
2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。