七年级数学下册期末复习知识点整理

2016-12-27

期末考试即将到来,同学们要如何准备复习呢?接下来是小编为大家带来的七年级数学下册期末复习知识点整理 ,供大家参考。

七年级数学下册期末复习知识点整理:

1、邻补角与对顶角

两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:

7图形

7顶点

7边的关系

7大小关系

7

7对顶角

7

∠1与∠2

7有公共顶点

7∠1的两边与∠2的两边互为反向延长线

7对顶角相等

即∠1=∠2

7

7邻补角

7

∠3与∠4

7有公共顶点

7∠3与∠4有一条边公共,另一边互为反向延长线.

7∠3+∠4=180°

7

7注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;

⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角

⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.

⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个.

2、垂线

⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.

符号语言记作:

如图所示:AB⊥CD,垂足为O

⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)

⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.

3、垂线的画法:

⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线.

注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上.

画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.

4、点到直线的距离

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离

记得时候应该结合图形进行记忆.

如图,PO⊥AB,同P到直线AB的距离是PO的长.PO是垂线段.PO是点P到直线AB所有线段中最短的一条.

现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用.

5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念

分析它们的联系与区别

⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度. 联系:具有垂直于已知直线的共同特征.(垂直的性质)

⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间. 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离.

⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同.

1、平行线的概念:

在同一平面内,不相交的两条直线叫做平行线,直线与直线互相平行,记作‖.

2、两条直线的位置关系

在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行.

因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)

判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:

①有且只有一个公共点,两直线相交;

②无公共点,则两直线平行;

③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)

3、平行公理――平行线的存在性与惟一性

经过直线外一点,有且只有一条直线与这条直线平行

4、平行公理的推论:

如果两条直线都与第三条直线平行,那么这两条直线也互相平行

如左图所示,∵‖,‖

∴‖

注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行.

两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角.

如图,直线被直线所截

①∠1与∠5在截线的同侧,同在被截直线的上方,

叫做同位角(位置相同)

②∠5与∠3在截线的两旁(交错),在被截直线之间(内),叫做内错角(位置在内且交错)

③∠5与∠4在截线的同侧,在被截直线之间(内),叫做同旁内角.

④三线八角也可以成模型中看出.同位角是“A”型;内错角是“Z”型;同旁内角是“U”型.

6、如何判别三线八角

判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全.

例如:

如图,判断下列各对角的位置关系:⑴∠1与∠2;⑵∠1与∠7;⑶∠1与∠BAD;⑷∠2与∠6;⑸∠5与∠8.

我们将各对角从图形中抽出来(或者说略去与有关角无关的线),得到下列各图.

如图所示,不难看出∠1与∠2是同旁内角;∠1与∠7是同位角;∠1与∠BAD是同旁内角;∠2与∠6是内错角;∠5与∠8对顶角.

注意:图中∠2与∠9,它们是同位角吗?

不是,因为∠2与∠9的各边分别在四条不同直线上,不是两直线被第三条直线所截而成.

7、两直线平行的判定方法

方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行

简称:同位角相等,两直线平行

方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行

简称:内错角相等,两直线平行

方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行

简称:同旁内角互补,两直线平行

几何符号语言:

∵ ∠3=∠2

∴ AB‖CD(同位角相等,两直线平行)

∵ ∠1=∠2

∴ AB‖CD(内错角相等,两直线平行)

更多相关阅读

最新发布的文章