2016七年级下册数学第五章测试题

2016-12-27

面对即将到来的测试,教师们要如何准备试题呢?接下来是小编为大家带来的2016七年级下册数学第五章测试题,供大家参考。

2016七年级下册数学第五章测试题:

一、选择题(每小题3分,共30分)

1. 已知∠α=35°,则∠α的补角的度数是( )

A.55° B.65° C.145° D.165°

2.将图中所示的图案平移后得到的图案是( )

A. B. C. D.

3.AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数

是( )

A.60° B.50° C.40° D.30°

4.a∥b,∠1=∠2,∠3=40°,则∠4等于( )A.40° B.50° C.60° D.70°

5.已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为( )

A.30° B.35° C.40° D.45°

6.AB∥CD,AC⊥BC,与∠CAB互余的角有( )

A.1个 B.2个 C.3个 D.4个

7.点 在 的延长线上,下列条件中不能判定AB∥CD的是( )

A.∠1=∠2 B.∠3=∠4

C.∠5=∠ D.∠ +∠BDC=180°

8.DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为( )

A.2个 B.3个 C.4个 D.5个

9. 下列条件中能得到平行线的是( )

①邻补角的角平分线;②平行线内错角的角平分线;③平行线同旁内角的角平分线.

A.①② B.②③ C.② D.③

10. 两平行直线被第三条直线所截,同位角的平分线( )

A.互相重合 B.互相平行

C.互相垂直 D.相交

二、填空题(每小题3分,满分24分)

11. 对顶角量角器,用它测量角的原理是 .

12. ∥ ,∠1=120°,∠A=55°,则∠ACB的大小是 .

13.计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是 .

14.直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是 .

15.在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为 .

16.AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则

∠2= .

17.直线a∥b,则∠ACB= .

18.已知AB∥CD,∠1=60°,则∠2= 度.

三、解答题(共46分)

19.(7分)读句画图:直线CD与直线AB相

交于C,

根据下列语句画图:

(1)过点P作PQ∥CD,交AB于点Q;

(2)过点P作PR⊥CD,垂足为R;

(3)若∠DCB=120°,猜想∠PQC是多少度?并说

明理由.

20.(7分)方格中有一条美丽可爱的小金鱼.

(1)若方格的边长为1,则小鱼的面积为 ;

(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)

21.(8分)已知:∠BAP+∠APD = ,∠1 =∠2.求证:∠E =∠F.

22.(8分)已知:1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED∥FB.

23.(8分)CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.

24.(8分)已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.

2016七年级下册数学第五章测试题答案:

1. C 解析:∵ ∠α=35°,∴ ∠α的补角的度数为180°35°=145°,故选C.

2. C 解析:根据平移的性质可知C正确.

3. C 解析:因为FE⊥DB,所以∠FED=90°,由∠1=50°可得∠FDE=90°-50°=40°.因为AB∥CD,由两直线平行,同位角相等,可得∠2=∠FDE=40°.

4. D 解析:因为a∥b,所以∠2=∠4.

又∠2=∠1,所以∠1=∠4.

因为∠3=40°,所以∠1=∠4= =70°.5. C 解析:由AB∥CD可得,∠FEB=∠C=70°,∵ ∠F=30°,又∵ ∠FEB=∠F+∠A,

∴ ∠A=∠FEB ∠F=70° 30°=40°.故选项C是正确的.

6. C 解析:∵ AB∥CD,∴ ∠ABC=∠BCD.

设∠ABC的对顶角为∠1,则∠ABC=∠1.

又∵ AC⊥BC,∴ ∠ACB=90°,

∴ ∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,

因此与∠CAB互余的角为∠ABC,∠BCD,∠1.

故选C.

7. A 解析:选项B中,∵ ∠3=∠4,∴ AB∥CD (内错角相等,两直线平行),故正确;

选项C中,∵ ∠5=∠B,∴ AB∥CD (内错角相等,两直线平行),故正确;

选项D中,∵ ∠B+∠BDC=180°,∴ AB∥CD(同旁内角互补,两直线平行),故正确;

而选项A中,∠1与∠2是直线AC、BD被直线AD所截形成的内错角,∵ ∠1=∠2,∴ AC∥BD,故A错误.选A.

8. D 解析 :如题图所示,∵ DC∥EF,∴ ∠DCB=∠EFB.

∵ DH∥EG∥BC,

∴ ∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,

故与∠DCB相等的角共有5个.故选D.

9. C 解析 :结合已知条件,利用平行线的判定定理依次推理判断.

10. B 解析:∵ 两条平行直线被第三条直线所截,同位角相等,

∴ 它们角的平分线形成的同位角相等,∴ 同位角相等的平分线平行.

故选B.

11. 对顶角相等 解析:根据图形可知量角器测量角的原理是:对顶角相等.

12. 65° 解析:∵ l∥m,∴ ∠ABC=180°-∠1=180°-120°=60°.

在△ABC中,∠ACB=180°-∠ABC-∠A=180°-60°-55°=65°.

13. 垂线段定理:直线外一点与直线上所有点的连线中,垂线段最短

解析:根据垂线段定理,直线外一点与直线上所有点的连线中,垂线段最短,

∴ 沿AB开渠,能使所开的渠道最短.

14. ∠1+∠2=90° 解析:∵ 直线AB、EF相交于O点,∴ ∠1=∠DOF.

又∵ AB⊥CD,∴ ∠2+∠DOF=90°,∴ ∠1+∠2=90°.

15. 65° 解析:∵∠1=155°,∴∠EDC=180°-155°=25°.

∵DE∥BC,∴∠C=∠EDC=25°.

∵在△ABC中,∠A=90°,∠C=25°,

∴∠B=180°-90°-25°=65°.

故答案为65°.

16. 54° 解析:∵ AB∥CD,

∴ ∠BEF=180° ∠1=180° 72°=108°,∠2=∠BEG.

又∵ EG平分∠BEF,

∴ ∠BEG=∠BEF=×108°=54°,

故∠2=∠BEG=54°.

17. 78° 解析:延长BC与直线a相交于点D,

∵ a∥b,∴ ∠ADC=∠DBE=50°. ∴ ∠ACB=∠ADC +28°=50°+28°=78°.

故应填78°.

18. 120 解析:∵AB∥CD,∴∠1=∠3,

而∠1=60°,∴∠3=60°.

又∵∠2+∠3=180°,∴∠2=180°-60°=120°.

故答案为120.

19.解: ∠PQC=60°.

理由:∵ PQ∥CD,∴ ∠DCB+∠PQC=180°.

∵ ∠DCB=120°,∴ ∠PQC=180° 120°=60°.

20. 解:(1)小鱼的面积为7×6 ×5×6 ×2×5 ×4×2 ××1 × ×1 1=16.

(2)将每个关键点向左平移3个单位,连接即可.

21.证明:∵ ∠BAP+∠APD = 180°,∴ AB∥CD.∴ ∠BAP =∠APC.

又∵ ∠1 =∠2,∴ ∠BAP−∠1 =∠APC−∠2.

即∠EAP =∠APF.∴ AE∥FP.∴ ∠E =∠F.

22.证明:∵ ∠3 =∠4,∴ AC∥BD.∴ ∠6+∠2+∠3 = 180°.

∵ ∠6 =∠5,∠2 =∠1,∴ ∠5+∠1+∠3 = 180°.

∴ ED∥FB.

23. 解:∵ DE∥BC,∠AED=80°,∴ ∠EDC=∠BCD,∠ACB=∠AED=80°.

∵ CD平分∠ACB,

∴ ∠BCD= ∠ACB=40°,∴ ∠EDC=∠BCD=40°.

24. 解:∵ AB∥CD,∴ ∠B+∠BCE=180°(两直线平行,同旁内角互补).

∵ ∠B=65°,∴ ∠BCE=115°.

∵ CM平分∠BCE,∴ ∠ECM= ∠BCE =57.5°.

∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN=90°,

∴ ∠NCD=180°-∠ECM-∠MCN=180°-57.5°-90°=32.5°.

更多相关阅读

最新发布的文章